

Air Dispersion Modelling Study and Screening Human Health Risk Assessment Anglesea Power Station and Coal Mine

Prepared for: Alcoa Australia Limited

Prepared by: ENVIRON Australia Pty Ltd

> Date: July 2013

Project Number: AS140151

July 2013

Our Ref: AS140151

Nicci Marris Alcoa of Australia Limited Anglesea Power Station Camp Road Anglesea Victoria 3230

Dear Nicci

Re: Air Emissions Study – Alcoa Screening HHRA, Anglesea Power Station and Coal Mine, Victoria

We are pleased to present our final report of the Air Dispersion Modelling and Screening Human Health Risk Assessment (HHRA) Study for the Anglesea Power Station and Coal Mine. This report provides details of the emission inventory, dispersion modelling and a screening HHRA based on the approach recommended by the Victorian EPA.

Should you require any additional information, please contact the undersigned directly.

Yours sincerely ENVIRON Australia Pty Ltd

Brian Bell Principal, Australia

Executive Summary

An air dispersion modelling and screening Human Health Risk Assessment (HHRA) of the atmospheric emissions from Alcoa's Anglesea Power Station and Coal Mine have been completed to investigate the potential health risks arising from the atmospheric emissions from these facilities. The screening HHRA considered the potential health risks associated with the current power station emissions and coal mine operations.

The Victorian Environment Protection Authority (EPAV) specified that only those compounds that did not meet the State Environmental Protection Policy (Air Quality Management) (SEPP (AQM)) design criteria be included in the HHRA.

A comprehensive emission inventory identified 39 compounds that are likely to be associated with the atmospheric emissions from the power station and coal mine. The Air Pollution Model (TAPM) was used to predict the meteorology and dispersion of the power station emissions. The CALPUFF air dispersion model was used to model the particulate emissions from the coal mine operations using TAPM predicted meteorology. The predicted ground level concentrations of the compounds modelled were compared against the design ground level concentration (dglc) criteria presented in the Victorian SEPP (AQM).

Three compounds (sulphur dioxide [SO₂], particulate matter with an equivalent aerodynamic diameter of less than 10 μ m [PM₁₀] and particulate matter with an equivalent aerodynamic diameter of less than 2.5 μ m [PM_{2.5}]) were predicted to exceed the SEPP (AQM) dglc criteria in the modelled domain and these compounds were therefore included in the screening HHRA.

The screening HHRA has been confined to the inhalation pathway as this is expected to represent the most significant exposure route to the atmospheric emissions from Alcoa's Anglesea operations. It therefore does not take into account the alternative exposure pathways (e.g. ingestion, dermal absorption). The study considered background concentration data for compounds where this could be determined. The following quantitative health risk indicators were calculated across the model domain and for key receptors located in the vicinity of the Anglesea Power Station and Coal Mine:

- Composite (i.e. based on 1-hour SO₂, and 24-hour PM₁₀ and PM_{2.5} Hazard Quotients [HQs]) and 24-hour (i.e. based on 24-hour SO₂, PM₁₀ and PM_{2.5} HQs) acute (i.e. short term) Hazard Index (HI); and
- chronic (i.e. long term) HI.

The acute and chronic HQs and HIs were calculated for each model grid point based on the predicted ground level concentrations and the ambient air quality standards developed by the National Environment Protection Council (NEPC) in the National Environment Protection Measure (NEPM). Discrete receptor locations were identified to represent populations or individual residences that could be potentially exposed to atmospheric emissions from the Power Station and coal mine.

Based upon the results of the screening HHRA it can be concluded that:

- The emissions from the power station and coal mine when considered in combination with the background concentrations are predicted to result in a composite acute HI of greater than one at all but two of the nominated receptor locations.
- The 24-hour acute HI was less than one at all locations other than Camp Wilkin and Fraser Avenue.
- An analysis of the predicted concentrations associated with the maximum composite HIs indicated that the 99.5th percentile 24-hour PM₁₀ concentrations occurred at different times to when the 99.9th percentile 1-hour SO₂ concentration occurred.
- For all receptors other than Fraser Avenue, the individual PM₁₀ and SO₂ acute HQs were less than one indicating that the predicted PM₁₀ and SO₂ percentile concentrations considered in the screening HHRA were below the relevant NEPM ambient standards.
- For Fraser Avenue the acute HQ was predicted to be in excess of one for PM₁₀. Of this, Alcoa's operations were predicted to have contributed approximately 70% of the 24-hour concentration. The NEPM goal for PM₁₀ is to have no more than five days where the NEPM standard is exceeded. Further analysis of the modelling data indicates that the sixth highest 24-hour average concentrations predicted at Fraser Avenue are well below the NEPM standard for each of the five years modelled. While no exceedances of the NEPM standard have been recorded at the ambient particulate monitoring sites, the air dispersion modelling indicates the potential for this to occur albeit infrequently.
- The acute HIs marginally greater than one are not considered to present cause for concern in terms of possible health risks due to the inherent conservatism embedded in the exposure assessment applied to screening health risk assessment.
- The emissions from the power station and coal mine are predicted to result in a chronic HI and HQ of less than one at all of the nominated receptor locations.
- The potential for emissions from the power station and the coal mine to cause chronic health effects is therefore considered to be low.

The NEPM ambient air quality standards represent the currently accepted standards in Australia, and have therefore been used in this screening HHRA. Any changes to the NEPM ambient air quality standards may affect the outcome of the screening HHRA.

As with any risk evaluation, there are areas of uncertainty in this assessment. To ensure that potential risks are not underestimated, uniformly conservative assumptions have been used to characterise exposure and toxicity.

Alcoa has implemented an Air Quality Control System to manage the impacts of SO_2 on the Anglesea township which has reduced the occurrence of 1-hour average concentrations of SO_2 that exceed the NEPM 1-hour standard in the community. Only one exceedance of the NEPM standard has been recorded in the last four years.

Further, Alcoa commenced ambient PM_{10} and $PM_{2.5}$ monitoring in July 2012 to assess the potential impacts associated with fugitive particulate emissions from its operations. The monitoring results from July to December 2012 indicate that the NEPM standards were being met at all three monitoring locations during this period.

ENVIRON recommends that management/mitigation measures are regularly reviewed to ensure control of the acute (short-term exposure) risk posed by SO_2 from the power station and dust emissions from the coal mine.

Contents

Page

1	Introduction	1
1.1	Background	.1
1.2	Project Overview	.1
1.3	Coal Mine And Power Station Site Description And Process Summary	.1
2	Air Dispersion Modelling	2
∠ 21	Background	. э .3
22	Air Quality Criteria	.3
2.2	Power Station Emission Inventory	.0
231	Anglesea Power Station - Source Characteristics	.0
232	Fmission Estimates	.0
2.3.3	Treatment of Non-Detect Data	.8
_		
3	Coal-Mine Operations	1 0
3.1	Production and Throughput	10
3.Z	Coal Mining Operations	10
3.3	Potential Dust Sources	10
3.3.1	Coal/Waste Loading of Trucks	10
3.3.Z	Coal/Waste Material Dumping	10
3.3.3	Conveyer Transfer	11
3.3.4	Conveyor Transfer	11
3.3.5	Conveyor Beits	11
3.3.0	Stockyards	12
3.3.7	Stacking	12
3.3.8	Venicles and wheel Generated Dust	12
3.4	Coal Mine Operations - Particulate Emission Estimates	13
3.4.1	Wind Erosion	6
4	Existing Environment1	17
4.1	Meteorology	17
4.1.1	Surrounding Land Use	17
4.2	Ambient Air Quality Monitoring	8
4.2.1	Ambient Dust Monitoring	9
5	Model Methodology	20
5.1	Model Parameterisation	20
5.1.1	ТАРМ	20
5.1.2	CALPUFF	21
5.1.3	Discrete Receptors	21
5.1.4	Cumulative Impacts	22
5.2	Model Validation	23
5.2.1	Model Validation –Sulphur Dioxide	25
5.2.2	Model Validation – Fugitive Dust	26
5.3	Model Results	28

5.4	Air Dispersion Modelling Key Findings and Conclusions	0
6	Screening Human Health Risk Assessment	1
6.1	Background	51
6.1.1	Issue Identification	1
6.1.2	Hazard Identification and Dose Response	2
6.1.3	Exposed Population	5
6.1.4	Exposure Pathways3	5
6.1.5	Estimated Concentrations in Air	5
6.2	Exposure Assessment	6
6.2.1	Quantitative Risk Indicators	6
6.2.2	Acute Effects	37
6.2.3	Chronic Effects4	1
6.2.4	Irritancy4	2
6.3	Uncertainties Associated With Screening HHRA4	2
6.3.1	Predicted Ground Level Concentrations4	2
6.3.2	Ambient Air Quality Guidelines4	4
6.3.3	Exposure Uncertainty4	4
6.4	Screening HHRA Conclusions4	5
7	References4	7
8	Limitations Of Study5	0

List of Tables

Table 1: SEPP (AQM) Design Criteria for Individual Compounds	4
Table 2: Air Quality Criteria - Boron	5
Table 3: Stack Discharge Characteristics	6
Table 4: Summary of Power Station Emission Rates	7
Table 5: Summary of Trace Elements present in Coal	8
Table 6: Emission Factors, Control Factors and Average Particulate Emission Rate Estimates.	14
Table 7: Particle Size Distributions	15
Table 8: Summary of Meteorological Parameters for 2008-2012	17
Table 9: 2008-2012 Summary of Ambient SO ₂ Concentrations $(\mu g/m^3)^1$, 1-Hour Average	18
Table 10: 23 July 2012- 31 December 2012 - Summary of Ambient Dust Concentrations (µg/m 3	³),
1-Hour and 24-Hour averages	19
Table 11: Summary of Discrete Receptors	22
Table 12: Background Concentrations	23
Table 13: Performance Evaluation Summary – Wind Speed (2008-2012)	24
Table 14: Predicted and Observed Ground Level Concentration SO ₂ – 2008-2012	25
Table 15: Predicted and Observed Ground Level Concentration PM_{10} and $PM_{2.5}$ – July to	
December 2012	27
Table 16: Predicted Concentration of Compounds in the Modelled Domain ¹	29
Table 17: Summary of the NEPM Standards Used	34
Table 18: Calculated Acute Hazard Indices (SO ₂ and PM ₁₀)	39
Table 19: Calculated Acute Hazard Indices (SO ₂ and PM _{2.5})	40
Table 20: Summary of Predicted Concentrations at Fraser Avenue	41
Table 21: Calculated Chronic Hazard Indices	41

List of Figures

Figure 1:	Location Map
Figure 2:	Inventory Selection Process
Figure 3:	Anglesea Observed Winds – Wind Roses Annual 2008
Figure 4:	Anglesea Observed Winds – Wind Roses Annual 2009
Figure 5:	Anglesea Observed Winds – Wind Roses Annual 2010
Figure 6:	Anglesea Observed Winds – Wind Roses Annual 2011
Figure 7:	Anglesea Observed Winds – Wind Roses Annual 2012
Figure 8:	Summary of Observed Wind Speed at Anglesea (2008-2012)
Figure 9:	Summary of Observed Wind Direction at Anglesea (2008-2012)
Figure 10:	Site Topography
Figure 11:	Surrounding Land Use
Figure 12:	Location of SO ₂ Monitoring Stations
Figure 13:	Location of 3 Dust Monitoring Stations
Figure 14:	Pollution Rose Camp Rd PM ₁₀
Figure 15:	Pollution Rose Camp Rd PM _{2.5}
Figure 16:	Pollution Rose Camp Wilkin PM ₁₀
Figure 17:	Pollution Rose Camp Wilkin PM _{2.5}
Figure 18:	Pollution Rose Barwon Water PM ₁₀
Figure 19:	Pollution Rose Barwon Water PM _{2.5}

Figure 20: Location of Discrete Receptors Figure 21: Pdf Plot of Wind Speed – Obs vs Pred (2008-2012) Figure 22: Pdf Plot of Wind Direction – Obs vs Pred (2008-2012) Figure 23: SO₂ Validation – Year 2008 Figure 24: SO₂ Validation – Year 2009 Figure 25: SO₂ Validation – Year 2010 Figure 26: SO₂ Validation – Year 2011 Figure 27: SO₂ Validation – Year 2012 Figure 28: SO₂ Validation – Years 2008-2012 Figure 29: PM_{2.5} Validation – July-December 2012 (1-Hour) Figure 30: PM₁₀ Validation – July-December 2012 (1-Hour) Figure 31: PM₁₀ and PM_{2.5} Validation – July-December 2012 (24-Hour) Figure 32: Concentration Isopleth: Composite Acute HI (SO₂ and PM₁₀) Figure 33: Concentration Isopleth: 24-Hour Acute HI (SO₂ and PM₁₀) Figure 34: Concentration Isopleth: Composite Acute HI (SO₂ and PM_{2.5}) Figure 35: Concentration Isopleth: 24-Hour Acute HI (SO₂ and PM_{2.5}) Figure 36: Concentration Isopleth: Chronic HI (SO₂ and PM_{2.5})

List of Appendices

Appendix A: EPAV Correspondence

Appendix B: Sampling Methods

Appendix C: TAPM Input File

Appendix D: Haul Road Emission Rates

Appendix E: Concentration Isopleths for Compounds

Appendix F: Analysis of Concentrations Associated with the Peak HQs

LIST OF ACRONYMS

AQCS	Air Quality Control System
AQM	Air Quality Management
ВоМ	Bureau of Meteorology
BPIP	Building Profile Input Program
СО	Carbon monoxide
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DGLC	Design ground level concentration
EPAV	Environment Protection Authority (Victorian)
FB	Fractional Bias
GASP	Global Analysis and Prediction
GDA	Geocentric Datum of Australia
GLC	Ground level concentrations
GM	Geometric Mean Bias
HHRA	Human Health Risk Assessment
ΙΟΑ	Index of Agreement
Ν	North
NEPM	National Environment Protection Measures
NMSE	Normalised Mean Square Error
NO _x	Oxides of nitrogen
NO ₂	Nitrogen Dioxide
NPI	National Pollution Inventory
OLM	USEPA's Ozone Limiting Method
PAH	Polycyclic Aromatic Hydrocarbons
PM _{2.5}	Particulate matter with an equivalent aerodynamic diameter of less than 2.5 µm
PM ₁₀	Particulate matter with an equivalent aerodynamic diameter of less than 10 µm
RHC	Robust Highest Concentration
RMSE	Root Mean Square Error
RMSE_S	Systematic Root Mean Square Error
RMSE_U	Unsystematic Root Mean Square Error
S	South
SE	Southeast
SEPP	State Environmental Protection Policy
SD	Standard Deviation
SO ₂	Sulphur Dioxide
STP	Standard Temperature and Pressure - is defined by IUPAC (International
	Union of Pure and Applied Chemistry) as air at 0°C (273.15 K, 32 °F) and
	10 ⁵ Pascals
ТАРМ	The Air Pollution Model. A meteorological and dispersion model developed by
	CSIRO.
USEPA	United States Environmental Protection Agency
VG	Geometric Variance
VOC	Volatile Organic Compounds
WHO	World Health Organisation

UNITS OF MEASUREMENT

dDaykgKilogramKKelvinkPaKilo PascalskmKilometremMetrem³Cubic metreMgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	O°	Degree Celsius
kgKilogramKKelvinkPaKilo PascalskmKilometremMetrem³Cubic metreMgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	d	Day
KKelvinkPaKilo PascalskmKilometremMetrem³Cubic metreMgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	kg	Kilogram
kPaKilo PascalskmKilometremMetrem³Cubic metreMgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	К	Kelvin
kmKilometremMetrem³Cubic metreMgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	kPa	Kilo Pascals
mMetrem³Cubic metreMgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	km	Kilometre
m³Cubic metreMgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	m	Metre
MgMilligramMWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	m ³	Cubic metre
MWMegawatt (or 1 x 10 ⁶ watts)ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	Mg	Milligram
ppbParts per billionppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	MW	Megawatt (or 1 x 10 ⁶ watts)
ppmParts per millionµgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	ppb	Parts per billion
µgMicrogramµg/m³Microgram per cubic metre expressed at STPtTonnes	ppm	Parts per million
µg/m³Microgram per cubic metre expressed at STPtTonnes	hð	Microgram
t Tonnes	μg/m ³	Microgram per cubic metre expressed at STP
	t	Tonnes

1 Introduction

1.1 Background

Alcoa of Australia (Alcoa) operates the 160 megawatt (MW) Anglesea Power Station (power station) and the Anglesea Coal Mine (coal mine) near Anglesea, in Victoria, Australia (Figure 1). The Power Station supplies approximately 40% of the power required by Alcoa's Point Henry aluminium smelter.

Alcoa contracted ENVIRON Australia Pty Ltd (ENVIRON) to conduct an air dispersion modelling study and screening Human Health Risk Assessment (HHRA) of the potential health risks arising from atmospheric emissions from the Anglesea Power Station and Coal Mine. The screening HHRA has considered the potential health risks associated with air emissions from the existing operations.

This report details the air dispersion modelling study, the screening HHRA approach and methodology, and the results of potential acute and chronic risks arising from atmospheric emissions from the power station and the coal mine.

1.2 **Project Overview**

The study includes the identification of atmospheric emissions that may result from the power station and coal mine based on National Pollutant Inventory (NPI) reports, stack monitoring reports, raw materials handling and process conditions. The identified emissions were included in the air dispersion modelling study to predict ground level concentrations across the model domain and at discrete receptors.

This HHRA is considered to be a screening-level assessment in that it makes generally conservative assumptions regarding the potential magnitude of exposure. The Victorian Environment Protection Authority (EPAV) specified that only those compounds that do not meet the State Environmental Protection Policy (Air Quality Management) (SEPP (AQM)) (EPAV, 2001a) design criteria be included in the HHRA (see Appendix A for EPAV correspondence). This assessment assumed an additive approach to the calculation of health risks, which is generally considered to be conservative (i.e. health protective). Potential antagonistic or synergistic effects were not considered as these cannot readily be quantified. The results of the screening HHRA are able to be used to identify the individual sources and compounds exhibiting the highest contribution to potential health risks in order to help define atmospheric emission management strategies.

1.3 Coal Mine And Power Station Site Description And Process Summary

The Anglesea Coal Mine is an open pit mine located approximately 0.5 km north, northwest of the town of Anglesea and 1.2 km south, southwest of the Anglesea Power Station (Figure 1). The power station is located approximately 1.5 km north of the town of Anglesea. The coal mine and the power station are both located within a 7,221 hectare (ha) mining lease known as the Anglesea Heath.

The coal mine typically operates between 7am and 7pm, seven days per week to produce 1.1 Mtpa of coal for the power station. Alcoa moves overburden to the waste dumps and extracts the brown coal using excavators (mechanical diggers) and 60 t dump trucks. The coal is delivered to the primary crusher and from the crusher to the live stockpiles.

Coal is recovered from the live stockpiles and sent to the pulverisers that reduce the coal to a fine material that is dried and injected into the boiler. The hot combustion gases in the boiler are used to generate steam to drive a two-cylinder 160 MW condensing turbine producing electricity.

Electrostatic precipitators collect more than 98% of the fly ash before the gas passes through induced draft fans to the stack for discharge. The majority of the sulphur that is present in the brown coal is oxidised in the boiler and is emitted to the atmosphere via the power station stack in the form of sulphur dioxide (SO_2).

In 2009 Alcoa developed and implemented and Air Quality Control System (AQCS) to manage the emissions of SO_2 under conditions were the emissions are being dispersed over the town of Anglesea. The AQCS has been integrated into the power station operations. It has resulted in a reduction in the number of exceedances of the National Environment Protection Measure (NEPM) standard of 200 ppb for SO_2 recorded at the ambient monitoring sites located in the town of Anglesea since its inception. The NEPM goal has been met at all of the Anglesea monitoring stations since 2009.

2 Air Dispersion Modelling

2.1 Background

Air dispersion modelling of the Anglesea Power Station and Coal Mine was undertaken using The Air Pollution Model (TAPM, V4.05) and CALPUFF (V6.26). TAPM was used to predict the meteorology and the dispersion of the atmospheric emissions from the Anglesea Power Station. CALPUFF was used to model the particulate emissions from the Anglesea Coal Mine using the TAPM predicted meteorology. The air dispersion modelling results were evaluated against the ambient monitoring data for SO₂ and particulates to evaluate the reliability of the model predictions. The predicted ground level concentrations were compared to the SEPP (AQM) design ground level concentration criteria to select the emissions that were considered in the screening HHRA. This section provides details on the air quality criteria used, emission inventory derivation, model set-up and parameterisation, model validation and the model results.

2.2 Air Quality Criteria

The predicted ground level concentrations resulting from the coal mine and power station's atmospheric emissions have been assessed against the design criteria described in the SEPP (AQM) as presented in Table 1.

The design ground level concentration criteria are typically employed in the assessment of new or expanded sources of emissions. The design ground level concentration criteria for air quality indicators based on toxicity apply everywhere, except inside buildings.

In addition to the pollutants listed above, Boron was included in the assessment as Alcoa has emissions data. As there are no EPAV SEPP Guideline values for Boron, the Texas Commission Environmental Quality (TCEQ) Levels were applied as listed in Table 2.

		EPAV (SEPP) ^[4] design ground
Substance	Averaging period	
	Class 1	(µ9/11)
со	1-hour	29,000
NO ₂	1-hour	190
SO ₂	1-hour	450
PM ₁₀ ^{L'J}	1-hour	80
Lead	1-hour	3
	Class 2	
PM _{2.5}	1-hour	50
Chromium (III) and compounds	3-min	17
Copper dusts and mists	3-min	33
Manganese and compounds	3-min	33
Mercury - Organic	0 min	0.33
Mercury - Inorganic	3-min	3.3
	24-hour	2.9
Fluoride ^[2]	7 days	1.7
	90 days	0.5
Antimony	3-min	17
Chlorine	3-min	100
Hydrogen Chloride	3-min	250
	Class 3	
Arsenic and compounds	3-min	0.17
Cadmium and compounds	3-min	0.033
Nickel and compounds	3-min	0.33
Dioxins and Furans ^[3]	3-min	0.000037
PAH (as BaP)	3-min	0.73
Benzene	3-min	53
Beryllium	3-min	0.007
Chromium VI Compounds	3-min	0.17
-		

Notes:

1. Applies to point sources only. For area-based sources and roads, applicable criteria are specified in the relevant industry Protocol for Environment Management (PEM).

2. Fluoride content is calculated by dry weight and expressed as fluoride (F-) µg/m³.

3. TCDD 1-TEQ means 2, 3, 7, 8-Tetrachloro-dibenzodioxan as international equivalents.

4. Gas volumes are expressed at 25°C and at an absolute pressure of one atmosphere (101.325 KPa).

nental Quality (TCEQ) Effects
r Quality Objective (µg/m ³)
; ;

- http://www.tceq.texas.gov/toxicology/esl/list_main.html#esl_1

2.3 **Power Station Emission Inventory**

The nature and quantity of atmospheric emissions released from the Power Station and coal mine have been characterised through the development of an emissions inventory. The emissions inventory details key compounds and the emission rates from the Power Station and coal mine. These emissions data have been sourced from emission monitoring campaigns for the power station, and an understanding of the process, and National Pollution Inventory (NPI) reporting, and NPI emission estimation methods. The key compounds in the atmospheric emissions from the power station and coal mine include the following:

- 1 **Sulphur Dioxide (SO₂):** SO₂ is primarily generated by the oxidation of sulphur in the coal burnt in the power station.
- 2 **Nitrogen Dioxide (NO₂):** During coal combustion, nitrogen present in both the coal and the combustion air is converted to nitrogen dioxide (NO₂) and other oxides of nitrogen (NO_x).
- 3 **Particulates** particulate are primarily emitted as a result of the mining activities and from the power station stack in the form of uncaptured coal ash.
- 4 **Metals:** metal emissions are primarily contained in the particulates emitted from the coal mine and power station operations.
- 5 **Carbon Monoxide:** Carbon monoxide is formed by the incomplete combustion in the Power Station.
- 6 **Polycyclic Aromatic Hydrocarbons (PAHs):** PAHs originate from the combustion of coal in the Power Station.
- 7 **Volatile Organic Compounds:** VOC's originate either by the volatilisation from, or combustion of, the coal in the power station.

An overview of the emission inventory process is presented as Figure 2 and includes the substance selection, source selection and an uncertainty analysis. The following sections provide information on the development of the power station emissions inventory while Section 3 presents details on the emissions inventory development for the coal mine.

2.3.1 Anglesea Power Station - Source Characteristics

The characteristics of the power station stack and emissions used in the modelling are presented in Table 3. The discharge characteristics and stack coordinates were provided by Alcoa (N. Marris *pers. comms.* 18 July 2011).

Table 3: Stack Discharge Characteristics								
			Cteck	Stack Chara	cteristics at Disc	charge		
Description	GDA Coordinates		Height	Diameter	Average Velocity	Average Temp		
	Х	Y	(m)	(m)	(m/s)	(K)		
Stack	253764	5747349	107	3.88	36.8	465.5		

2.3.2 Emission Estimates

The compounds considered in this study represent Alcoa's best available knowledge of the emissions released to air from the power station stack and coal mine. This knowledge has been gathered primarily from source emission monitoring campaigns and coal analysis conducted at the Power Station and coal mine. The key processes undertaken to identify and prioritise compounds of interest included:

- 1 Compounds likely to be present in the air emissions based on process knowledge.
- 2 Priority compounds covered in the Ambient Air NEPM (NEPC, 1998) and the Ambient Air Toxics NEPM (NEPC, 2004).
- 3 Compounds known to be present in the coal due to the comprehensive monitoring program.
- 4 Compounds known to be emitted by similar facilities, nationally and internationally.
- 5 Compounds that triggered NPI thresholds.
- 6 Compounds specified in the environmental license.

A total of 39 individual compounds were identified and included into the emission inventory. These compounds included NO_x , carbon monoxide, SO_2 , PM_{10} (particulate matter with an equivalent aerodynamic diameter of less than 10 µm), $PM_{2.5}$ (particulate matter with an equivalent aerodynamic diameter of less than 2.5 µm), fluorides, metals, PAH's and dioxins and furans. The inventory data for the Power Station stack emissions were primarily sourced from stack testing reports prepared by external NATA accredited consultants. The results of stack emissions testing reports provided by Alcoa from 2008 to 2012 (N Marris, *pers. comms.* 30 January 2013) were used in the development of the emission inventory. Quarterly trace analysis results for coal samples provided by Alcoa were used in conjunction with estimated PM_{10} emission rates to calculate the trace element emissions contained in particulate emissions from the coal mine.

For this study the emissions profile considered the normal worst case (i.e. maximum) emissions from the Power Station and coal mine unless there were continuous emissions data available. For SO₂, measured hourly average emission rates were used in the dispersion model to predict ground level concentrations. The continuous SO₂ emissions monitoring data were used in the assessment as they reflect the actual operating regime of the power station including the impact of the AQCS.

A summary of the sampling methods used to measure the stack emissions at the Power Station are summarised in Appendix B. Table 4 presents the power station stack emission rates used in the air quality assessment. The coal mine emission estimates are presented in Section 3.

Table 4: Summary of Power Station Emission Rates							
No.	Compound	Emission Rate (g/s)	No.	Compound	Emission Rate (g/s)		
1	Nitrogen Dioxide ^[1]	103	21	2, 3, 7, 8 - TCDF	1.47 x 10 ⁻⁹		
2	Sulphur Dioxide ^[2]	1,148 ^[3]	22	2, 3, 7, 8 - TCDD	4.83 x 10 ⁻¹⁰		
3	Carbon Monoxide	2.8	23	1,2,3,7,8 - PeCDF	8.50 x 10 ⁻¹⁰		
4	PM _{2.5}	1.0	24	2,3,4,7,8 - PeCDF	2.17 x 10 ⁻⁹		
5	PM ₁₀	4.3	25	1,2,3,7,8 - PeCDD	6.67 x 10 ⁻¹⁰		
6	Total Fluoride	0.5	26	1,2,3,4,7,8 - HxCDF	1.65 x 10 ⁻⁹		
7	Chlorides	4.2	27	1,2,3,6,7,8 - HxCDF	1.52 x 10 ⁻⁹		
8	Mercury	0.0009	28	2,3,4,6,7,8 - HxCDF	2.83 x 10 ⁻⁹		
9	Arsenic	0.002	29	1,2,3,7,8,9 - HxCDF	8.33 x 10 ⁻¹⁰		
10	Cadmium	0.0001	30	1,2,3,4,7,8 - HxCDD	8.33 x 10 ⁻¹⁰		
11	Chromium (III)	0.0137	31	1,2,3,6,7,8 - HxCDD	8.33 x 10 ⁻¹⁰		
12	Copper	0.0022	32	1,2,3,7,8,9 - HxCDD	8.33 x 10 ⁻¹⁰		
13	Lead	0.0007	33	1,2,3,4,6,7,8 - HpCDF	6.33 x 10 ⁻⁹		
14	Manganese	0.0042	34	1,2,3,4,7,8,9 - HpCDF	3.33 x 10 ⁻⁹		
15	Nickel	0.0183	35	1,2,3,4,6,7,8 - HpCDD	3.33 x 10 ⁻⁹		
16	Benzo(a)pyrene ^[4]	0.02	36	OCDF	1.67 x 10 ⁻⁸		
17	Beryllium	0.0002	37	OCDD	1.67 x 10 ⁻⁸		
18	Benzene	0.0033	38	Antimony	0.0002		
19	Chlorine	0.0067	39	Boron	1.1		
20	Chromium (VI)	0.015					

Notes:

[1] Oxides of Nitrogen expressed as Nitrogen Dioxide (NO₂)

[2] Variable hourly emission rates of SO₂ were provided by Alcoa for the year 2008-2012. These actual values were used for modelling and validation.

[3] Average of emission rates of SO₂ for 2008-2012 based on hourly emission rates provided by Alcoa.

[4] The determination of PAH's is based on TEQ values that have been calculated using the toxicity

equivalence factors (TEF's) relative to Benzo(a)pyrene, as reported by Larsen and Larsen (1998) in WHO (2003)

With the exception of SO_2 where hourly emissions rates were used, the emission rates presented in Table 4 were used in the modelling. Trace element composition data for the particulate emissions were used to assess the concentrations of metals resulting from the Coal Mine operations. The maximum trace element concentrations measured during 2010 for the coal operations used in the air quality assessment, are presented as Table 5.

Table 5: Summary of Trace Elements present in Coal							
No.	Trace Element	Maximum (mg/kg dry coal basis)	No.	Trace Element	Maximum (mg/kg dry coal basis)		
1	Beryllium	0.9	6	Mercury	0.19		
2	Chloride	400	7	Nickel	19		
3	Chromium (total)	7	8	Lead	3		
4	Copper	80	9	Antimony	0.2		
5	5 Fluoride 41						
Notes:							
Trace element analysis conducted quarterly on coal samples in 2010 and the results were provided by Alcoa (N.Marris <i>pers. comms.</i> 18 July 2011)							

2.3.3 Treatment of Non-Detect Data

There are four approaches that are typically used to manage non-detect data in the formation of an Emission Inventory (USEPA 1991). These include:

Approach 1: The use of detection limit (DL) data for all non-detects. All non-detects are assigned the value of DL (i.e. the largest concentration of analyte that can be present but not detected).

Approach 2: The reporting of Non-detects as Zero. In which all non-detect chemicals are assumed to be absent.

Approach 3: Non-detects reported as half the DL. This assumes that on average all values between DL and zero could be present, and that the average value of non-detects could be as high as half the detection limit.

Approach 4: Statistical estimate of concentrations below the DL: Use of statistical methods to estimate concentrations below the DL. This approach is more suited for datasets that have a high proportion of detects (> 50%). Therefore statistical predictions of concentrations below the DL are recommended only for compounds which significantly impact the risk assessment and for which data are adequate.

The choice of the appropriate method depends on a number of factors including the severity of the data screened, the size of the data set, and what distributional assumptions are reasonable. ENVIRON's approach to defining the non-detects within this report are as follows:

- Approach 2: Non-detects are reported as zero when all analysis returns values below the minimum detect for the emission source in question.
- Approach 3: Applied if the analyte is known to be present in the raw materials or generated during the process but not detected in the sampling and analysis undertaken and/or detected in at least one sample.

3 Coal-Mine Operations

3.1 **Production and Throughput**

The Anglesea Coal Mine is an open pit mine located near the Anglesea Power Station. The mine has a crusher with a capacity of 500 tph (dry) and the coal typically has a moisture content of approximately 44.8%. The coal mine plant typically operates between 7am and 7pm, seven days per week for around 4,380 hours per year to produce 1.1 Mtpa of coal for the Power Station.

3.2 Coal Mining Operations

Alcoa extracts brown coal and moves overburden within the open cut mine using excavators (mechanical diggers) and 60t dump trucks. The excavators load the coal onto trucks for delivery to the primary crusher. Coal is dropped in a 70t hopper at the primary crusher area and is then fed to the crusher via a vibrating feeder. No screening takes place. From the crusher the coal is fed to the live stockpiles. Coal is reclaimed from live stockpile by apron feeder and transferred to the power station via feed conveyor. The operation of the feed conveyor is automated and the coal feed operates continuously.

3.3 Potential Dust Sources

The main potential sources of dust emissions and the proposed dust control measures that will be utilised at the coal mine are described in the following sections. The efficiency of the proposed dust control measures are also described. The control efficiencies are primarily based on the National Pollutant Inventory (NPI)'s estimated control factors for mining activities (NPI, 2012). Potential sources of dust include:

- coal/waste excavation;
- movement of material in pits (i.e. loading of haul trucks).coal/waste dumping onto stockpiles;
- coal crushing;
- conveyor transfer points;
- wheel generated dust from truck movements; and
- wind erosion from ore/waste stockpiles and cleared areas.

3.3.1 Coal/Waste Loading of Trucks

Removal of coal and waste material at the mine has been modelled as the material being lifted and loaded in haul trucks. The emission factors from the NPI Emission Estimation Technique Manual (EETM) for Mining v3.1 (NPI, 2012) were used in conjunction with the total material movements.

3.3.2 Coal/Waste Material Dumping

Coal from the pits is transported to the primary crusher and stockpiled near the primary crusher while overburden is taken to the waste dumps. Dust suppression is provided by water truck which is used to wet down near the digging area. Emissions from loading and unloading of overburden from haul-trucks were calculated by using the emission factor from the NPI EETM for Mining v3.1 (NPI, 2012) based on the total amount of material moved.

3.3.3 Coal Crushing

Coal from the mine is considered to be high moisture content for emission estimation purposes (i.e. greater than 4% by weight). The NPI EETM for Mining v3.1 (NPI, 2012) provides emission factors for crushing based on the moisture content and throughput. For primary crushing of high moisture content ores, the PM₁₀ default emission factor is given as 0.004 kg/t. Primary crushing occurs for approximately 2,400 hours per year. Wetting sprays are included at the crusher to minimize dust emissions even though the coal moisture content is very high.

3.3.4 Conveyor Transfer

Conveyor transfer points are potentially a large source of dust emissions. Emissions from transfer points can arise following the initial start-up, where material which has dried out on the conveyor falls off at the belt return, or can occur as material falls off at the belt idlers on the return belt, or via winnowing.

At the coal mine, coal will be conveyed from the primary crusher to the live stockpiles and from these stockpiles to the Power Station. Two transfer stations are used.

Alcoa has committed to enclosing the transfer points and the control efficiency adopted for these sources for modelling purposes is 75%. This is less than the 100% recommended by the NPI (2012) for a totally enclosed system to allow for dust emissions which may escape through the conveyor entry and exit openings and to ensure that the emissions estimates remain conservative.

3.3.5 Conveyor Belts

When exposed to high winds, material on conveyor belts can be lifted off creating nuisance impacts. This is particularly true if there are high conveyors exposed to strong winds or the material being conveyed is prone to dusting.

The European Commission has published a series of publications on Integrated Pollution Prevention and Control, including "Reference Document on Best Available Techniques on Emissions from Storage" (European Commission, 2006). This document addresses the control of dust from conveying systems and states that "a main source of dust emissions from belts is when the returning part of the belt comes into contact with the support pulleys."

The European Commission's Best Available Techniques (BAT) document defines BAT for conveyors and transfer chutes as follows:

"For all types of substances, BAT is to design conveyor to conveyor transfer chutes in such a way that spillage is reduced to a minimum. A modelling process is available to generate detail designs for new and existing transfer points.

For non or very slightly drift sensitive products (S5) and moderately drift sensitive, wettable products (S4), BAT is to apply an open belt conveyor and additionally, depending on the local circumstances, one or a proper combination of the following techniques:

- lateral wind protection;
- spraying water and jet spraying at the transfer points; and/or
- belt cleaning."

The European BAT document defines the dispersiveness of bulk material as follows:

"The following classification, based on the susceptibility of a material to be dispersed and the possibility of dealing with the problem by wetting, is used for non-reactive products:

- S1: highly drift sensitive, not wettable;
- S2: highly drift sensitive, wettable;
- S3: moderately drift sensitive, not wettable;
- S4: moderately drift sensitive, wettable; and
- S5: not or very slightly drift sensitive."

The European BAT document provides information on dispersiveness classes of solid bulk materials and categorises brown coal within the S4 dispersive class. Therefore, based on the European Best Available Practice documentation the management of transfer points (use of sprays or enclosing), return conveyor dust (belt scrapers/washing), and maintaining moisture in the coal are key to minimising dust from conveyor operations. With these controls in place, the amount of dust expected to be generated from uncovered conveyors would be negligible from a modelling perspective.

As such, the current modelling has only considered particulate emissions from the conveyor transfer points.

3.3.6 Stockyards

The majority of coal from the mine is dumped directly into the crusher. However it is assumed that up to 2% of the coal will be dumped at a permanent stockpile that is in addition to the two live product stockpiles that are used to provide coal to the Power Station.

3.3.7 Stacking

The coal from the crusher is conveyed to the live stockpiles by a conveyor and is placed onto the stockpile from a controlled drop height.

3.3.8 Vehicles and Wheel Generated Dust

Emissions from vehicles travelling along the haul roads have been estimated using the equation developed by the USEPA and provided in the NPI EETM for Mining v3.1 (NPI 2012).

The total vehicle kilometres travelled (VKTs) for haul trucks was calculated based on the estimated distance for the round trip between the mine and the primary crusher and the number of trips per year travelled by the haul trucks.

Alcoa uses a fleet of five haul trucks (60 tonnes each), one dozer and two excavators to produce 1.1 Mtpa of coal. Alcoa has also indicated that water trucks are used for dust suppression on unsealed roads. A summary of the emission estimates from the coal mine and the controls is listed in Section 3.4, Table 6.

3.4 Coal Mine Operations - Particulate Emission Estimates

To enable the prediction of ground level dust concentrations generated from the coal mine operations, hourly dust emission rates are required to be estimated from all major sources. Factors which are important for dust generation include:

- the coal type being handled;
- moisture content;
- operational activities;
- quantity of coal being moved and the number of movements;
- size of stockpiles and level of activity;
- level of vehicle traffic, average speed and load;
- rainfall;
- evaporation; and
- wind speed.

The throughput rates, emission factors, control factors and resultant particulate emission estimates for the 1.1 Mtpa of coal production based on the methodology presented in Section 3.3 are presented in Table 6. A conservative approach has been adopted in setting emission estimates for stockpiling and reclaiming activities.

The emission factors are primarily based on the default emission factors recommended by the NPI (2012) for 'high' moisture coal. The control efficiencies adopted for each emission source are based on the recommended NPI (2012) control factors.

In should be noted that dust emission estimates for fugitive dust sources contain a high degree of uncertainty due to the complexity of characterising emission rates, the control efficiencies, and the effectiveness of management measures.

Table 6: Emission Factors, Control Factors and Average Particulate EmissionRate Estimates							
Source	No. of Operational Hours	Tonnage Throughput (Mtpa)	PM ₁₀ Emission Factor (kg/h)	PM ₁₀ Emission Factor (kg/t)	Control Factor (%)	PM ₁₀ Emission Estimate (g/s)	
Dozer on Coal	597	-	0.3	-	-	0.1	
Dozer on Overburden	2389	-	0.7	-	-	0.2	
Excavator	2986	3.4		0.014	75	1.1	
Coal Rehandle Permanent Stockpile	2986	0.02	-	0.0017	50	0.002	
Coal Loading to Haul Trucks	2986	1.1	-	0.0144	-	1.4	
Unloading from Truck to Crusher	2986	1.1	-	0.003	-	0.3	
Waste Loading to Haul Trucks	2986	2.3	-	0.0003	-	0.06	
Waste unloading to waste dump	2986	2.3	-	0.0036	-	0.8	
Primary Crusher on Coal	2400	1.1	-	0.002	70	0.06	
Haul Road 1 ^[1]	5706	-	-	-	75	0.5	
Haul Road 2 ^[1]	6536	-	-	-	75	1.6	
Transfer Station 1	8760	0.55	-	0.002	70	0.02	
Transfer Station 2	8760	0.55	-	0.002	70	0.02	
Stacking	8760	1.1	-	0.0017	0	0.06	
TOTAL						6.2	
Notes [1] Details calculations for Haul Road emission rates listed in Appendix D.							

An annual hourly variable emission file for PM_{10} was created for this assessment based on the factors presented in Table 6 and the methodology presented in Section 3.3. The variable emissions file, particle size distribution data and a particle size density of 1 g/cm³ (on which the USEPA particle size diameters are based) were used in the modelling to generate the predicted TSP and $PM_{2.5}$ emissions and subsequent ground level concentrations.

The USEPA's particle size distributions for batch drop, wind erosion and vehicle emissions (USEPA, 2004a and b; USEPA, 2006b) are presented in Table 7. The distribution data for batch drop and wind erosion are similar, while the particle size distribution for vehicle

emissions contains a lower percentage of $PM_{2.5}$. In the absence of particle size distribution data for the TSP, PM_{10} and $PM_{2.5}$ fractions, a composite distribution was derived from the USEPA's three emissions categories (Table 7). It is noted that adoption of a composite distribution represents a simplification as different particulate emission sources will have different particle size distributions (e.g. wind erosion versus vehicular dust) and there may also be differences between particle size distributions between the different material types.

Table 7: Particle Size Distributions								
Particle Size Range (µm)	Representative Particle Size (µm)	Percentage of Particulate (%) in Various Size Ranges						
		USEPA Batch Drop	USEPA Wind Erosion	USEPA Unpaved Road	This Study			
					TSP	PM ₁₀	PM _{2.5}	
<2.5	1.3	11	14.8	3.3	9	30	100	
2.5 - 5.0	3.8	9		18.7	8	27	-	
5.0 - 7.5	6.3	15	22.2		7	23	-	
7.5 – 10	8.7		15		6	20	-	
10 – 15	12.5	13	7		14	-	-	
15 – 23	19	26	20	52	15	-	-	
23 – 30	26		30		15	-	-	
30 – 40	35	26	26 26	26	15	-	-	
40 – 50	45			20	11	-	-	

Notes:

1. Particle sizes are equivalent aerodynamic size and not the physical size. The equivalent aerodynamic size relates to the aerodynamic properties of the particle. For example PM_{10} samplers measure the dust below 10 μ m equivalent aerodynamic size and not the physical size.

2. Wind erosion and vehicle emission size distributions are given for below 30 μ m only, but have been adjusted here to less than 50 μ m based on assuming 74% of the particulate is less than 30 μ m as per the batch drop distribution.

3. The distribution of $PM_{2.5}$ has been modelled assuming a single representative particle size of 1.3 μ m.

The USEPA particle size diameters are associated with the equivalent aerodynamic particle diameters which assume a particle density of 1 g/cm³. Brown coal has a density of around 1.05 g/cm³.

Generation of the hourly variable emission file requires specific hours of the day to be nominated during which emissions from each potential dust source may be released. It was assumed for modelling purposes that operations will occur at regular intervals across the operational hours (i.e. 7am to 7pm on a daily basis).

3.4.1 Wind Erosion

Dust emissions generated by wind erosion are generally negligible below a wind speed threshold, but increase rapidly when wind speeds exceed the threshold. Dust emissions from wind erosion are also dependent on the erodibility of the material which in turn is dependent on the size distribution of the material and whether a crust has developed. In general, material with a large (>50%) fraction of non-erodible particles (generally particles greater than 1 mm to 2 mm) will not erode as the erodible fraction is protected by these particles. As such, lump coal is not erodible by wind erosion although it is often dusty during material handling where the small fines fraction can be liberated. Fine coal is generally much more susceptible to wind erosion, particularly if there is a large fraction of particles in the range from 0.1 mm to 0.25 mm which can be dislodged by wind and then rolled and skipped along the surface (saltation). These larger particles can then dislodge the smaller (<50 μ m) dust fraction which can remain suspended in the air. The AP42 Industrial Wind Erosion Predictive Emission Factor was used to calculate wind erosion of open aggregate storage piles and exposed areas within the facility.

The USEPA (2006a) provides the following formula to estimate wind-generated particulate emissions in units of grams per square meter (g/m^2) per year from mixtures of erodible and non-erodible surface material subject to disturbance as:

Emission factor = $k \sum_{i=1}^{N} P_i$

(Equation 1)

- Where: k= particle size multiplier
 - N= number of disturbances per year
 - P_i = erosion potential corresponding to the observed fastest speed of wind for the ith period between disturbances, g/m²

The particle size multiplier (k) for Equation 1 varies with aerodynamic particle size and is 0.5 for PM_{10} and 0.075 for $PM_{2.5}$.

For the coal stockpile areas, wind erosion was assumed to be negligible based on the high moisture content present in brown coal (44.8%). At equilibrium, the coal moisture content results in an adsorbed multilayer of water which is 3-4 molecules thick (i.e. the micro-pores are completely water filled). The higher the moisture content of the coal, the greater the threshold wind velocity required to cause erosion. At 44.8% moisture content, the threshold friction velocity is higher than the wind gusts typically experienced on site and as such wind erosion of the coal stockpiles is rare.

4 **Existing Environment**

This section summarises the meteorology of the study area, the surrounding land use, ambient concentrations and background sources within the study area.

Meteorology 4.1

Anglesea experiences a temperate climate characterised by seasonal temperature changes, moderate humidity and moderate rainfall. Table 8 presents a summary of the meteorological conditions recorded at Anglesea during the 2008-2012 period.

Table 8: Summary of Meteorological Parameters for 2008-2012						
Period	Wind Speed (m/s) ^[1]	Predominant	Temperature (°C) ^[1]	Rainfall (mm) ^[2]		
	Average	Wind direction	remperature (°C)			
Annual	3.9	north-west	18.3	671 ^[2]		
Summer	4.5	south-west	22.6	143		
Autumn	3.2	north-west	19.0	144		
Winter	3.7	north-west	13.8	214		
Spring	4.3	north-west	18.5	170		
Notoo						

Notes:

[1] Data from the Anglesea Power Station were used to summarise wind speed and wind direction while the BoM, AWS Aireys Inlet 2008-2012 were used to summarise temperature and rainfall.

[2] Average (2008-2012)

Predominant winds are from the north-west and south-west during the year. In the autumn, winter and spring months the prevailing winds are from the north-west; whereas the predominant summer winds are generally from the south-west. The annual average wind speed for the five year period was 3.9 m/s with the spring and summer months having stronger average winds.

Annual wind roses derived from Alcoa's Anglesea meteorological station for 2008-2012 are presented as Figures 3 to 7. A comparison of the intra-annual variability in wind profiles at Anglesea for the years 2008 to 2012 is presented in Figures 8 and 9. The comparison indicates that the winds experienced at the site are fairly consistent between years.

4.1.1 Surrounding Land Use

The Power Station and coal mine sit near a break in the side of a sloping 8,500 ha basin mostly surrounded by elevated terrain. The area surrounding the Power Station (and in the modelled domain) contains urban areas to the south-east, and farmland and vegetated areas ranging from low coastal scrub to forest to the south, west and north of the site. Topography rises unevenly to 200 m above sea level, with flat to undulating farmland in the north and the Otway Ranges to the west. Site specific land use and topographical information used in the dispersion modelling is presented in Figures 10 and 11.

4.2 Ambient Air Quality Monitoring

A summary of the ambient meteorological and air quality monitoring undertaken by Alcoa at its six ambient monitoring stations located in Anglesea for 2008-2012 are presented in this section. Ambient SO₂ monitoring is undertaken at the CFA Hut, Camp Wilkin, Community Centre, Primary School, Camp Rd and Scout Camp. The locations of the monitoring stations are presented in Figure 12.

A summary of the ambient concentrations of SO_2 measured at the six monitoring stations for 2008-2012 are presented as Table 9.

Table 9: 2008-2012 Summary of Ambient SO ₂ Concentrations (µg/m ³) ¹ , 1-Hour Average						
Statistics	Community Centre Site	Primary School Site	Scout Camp Site	Camp Wilkin Site	CFA Hut Site	Camp Rd Site
Maximum	511	516	606	547	583	585
99.9 th Percentile	249	342	386	309	263	348
99.0 th Percentile	63	134	219	63	50	166
95.0 th Percentile	9	19	53	8	10	14
Number of Concentrations above NEPM Levels (571 µg/m ³ [200ppb])	0	0	1	0	1	1
Data Recovery Rate (%)	89	76 ²	91	92	93	93
Notes ¹ Concentrations are expressed at STP: 0°C and 101.325 kilopascals (kPa)						

²Reduced data recovery associated with station shutdown due to change of location – Station offline from 7 April 2011- 20 February 2012

The CFA Hut, Primary School and Scout Camp have each recorded one individual hourly concentration above the NEPM 1-hour standard (i.e. $571 \ \mu g/m^3$) over the five year period between 2008 and 2012 inclusive. The NEPM goal (i.e. no more than one day where the NEPM 1-hour standard was exceeded) was met at all monitoring sites. The data recovery at the stations over the five years was good, generally being greater than 89% with the exception of the Primary School site where a lower data recovery rate occurred as a result of the relocation of the monitoring site.

4.2.1 Ambient Dust Monitoring

Alcoa commenced monitoring ambient PM_{10} and $PM_{2.5}$ concentrations at three sites located around the coal mine in July 2012. A summary of the monitoring results for the period 23 July-31 December 2012 are presented as Table 10. The locations of the monitoring stations are presented in Figure 13.

Table 10: 23 July 2012- 31 December 2012 - Summary of Ambient Dust Concentrations (µg/m ³), 1-Hour and 24-Hour averages							
Statistics	Camp Rd Site (PM ₁₀)	Camp Rd Site (PM _{2.5})	Camp Wilkin Site (PM ₁₀)	Camp Wilkin Site (PM _{2.5})	Barwon Water (PM ₁₀)	Barwon Water (PM _{2.5})	
	1-Hour Averages						
Maximum	205	31	112	89	137	26	
99.9 th Percentile	85	24	69	39	114	23	
95.0 th Percentile	52	16	59	28	43	19	
Hourly Data Recovery Rate (%)	97	97	79 ¹	97	91	87	
24-Hour Averages							
Maximum	41.8	9.0	40.8	19.5	32.7	13.2	
99.9 th Percentile	40.8	8.8	40.3	18.4	32.6	12.8	
95.0 th Percentile	24.3	6.0	28.8	9.6	23.0	8.4	
Notes ¹ Reduced data recovery associated with equipment malfunction Concentrations are expressed at STP: 0°C and 101 325 kPa							

Recorded data recovery at the stations over the 6 months was high, with capture rates generally above 90%. 1-hour average PM_{10} concentrations of greater than 100 µg/m³ were observed at all sites and 1-hour average $PM_{2.5}$ concentrations over 50 µg/m³ were observed at Camp Wilkin over the monitoring period. Dust pollution roses for all three sites are presented in Figures 14 to 19.

These pollution roses show that the peak concentrations are associated from wind sectors that were not associated with Alcoa's Anglesea operations, with Barwon Water recording PM_{10} 1-hour average concentrations over 100 μ g/m³ when the winds were from the northwest, north-east and south-east. 1-hour average PM_{10} concentrations less that 50 μ g/m³ and $PM_{2.5}$ 1-hour average concentrations less than 20 μ g/m³ are observed from all wind directions.

The maximum 24-hour average PM_{10} concentration observed was 41.8 µg/m³ at Camp Rd. All 24-hour average concentrations recorded over the observed monitoring period were below the NEPM 24-hour standard of 50 µg/m³ for PM_{10} and 25 µg/m³ (Advisory Reporting Standard) for $PM_{2.5}$.

5 Model Methodology

Air dispersion modelling was undertaken using TAPM to predict the meteorology and the dispersion of the Power Station's stack emissions. CALPUFF was used to predict the ambient particulate concentrations resulting from the coal mine operations as it is better suited to modelling these low level fugitive sources than TAPM. TAPM was chosen to generate the three dimensional meteorological data as there is a lack of surface and upper air meteorological data available in the Anglesea area. The complex terrain of the region, and the impact of this on wind conditions mean that having temporally and spatially varying three dimensional meteorological conditions is important to the reliable prediction of the dispersion of the emissions.

Site specific meteorological files for the model domain were generated using TAPM, Version 4.05. TAPM is a prognostic model that predicts local three-dimensional meteorological data using synoptic, terrain, vegetation, soil type, and sea surface temperature data. The synoptic meteorological data are provided by the CSIRO and were derived from the GASP (Global Analysis and Prediction) data set which was generated by the Bureau of Meteorology (BoM) as part of its weather forecasting until 15 August 2010. After this date, the US NCEP (National Centers for Environmental Prediction) reanalysis product is used to provide the synoptic data due to the discontinuation of the GASP modelling. TAPM predicts a wide range of meteorological data including wind speed and direction, temperature, pressure, solar radiation, cloud cover and rain over the modelling domain. The CALTAPM program was used to extract the meteorological data from TAPM in the form that CALMET (used to generate the meteorological input file for CALPUFF) could use directly.

A summary of TAPM and CALPUFF parameterisation files is presented in the following sections with samples of the input files presented in Appendix C.

5.1 Model Parameterisation

5.1.1 TAPM

The meteorological simulations were completed using four nested grids (each 42 x 42 x 25 grid points) with grid spacing of 20, 8, 2 and 0.5 km respectively. The TAPM default setting was used to define the vertical grid levels. All of the model grids were centred at latitude $38^{\circ}23.5^{\circ}$ S and longitude $144^{\circ}10.5^{\circ}$ E, corresponding to 253,877 mE, 5,747,534 mN in GDA94 coordinates. TAPM supplied soil and terrain height databases were used as input into TAPM.

A user defined landuse database was incorporated into TAPM for the inner model grid to better represent the landuse surrounding Alcoa's Anglesea operations. A high resolution digital image was used to categorise the landuse in the study area. TAPM was run for the 2008 to 2012 calendar years and was configured to use three spin up days.

The ground level pollutant concentrations resulting from the Power Station's atmospheric emissions were predicted over the innermost TAPM model domain (i.e. 21 km by 21 km) with a grid resolution of 250 m.

5.1.2 CALPUFF

The CALPUFF modelling system was used for the air dispersion modelling of the particulate emissions from the coal mine and associated coal handling and storage operations.

CALPUFF is a transport and dispersion model that models "puffs" of material emitted from the sources, simulating dispersion and transformation processes along the transport pathway. Temporal and spatial variations in the meteorological fields are explicitly incorporated into the model. The model was configured to predict the particulate concentrations over the same model domain as used by TAPM (i.e. 21 km by 21 km with a grid resolution of 250 m). The meteorology predicted by TAPM was converted to a gridded three dimensional data file suitable for use by CALMET using the CALTAPM tool developed by TRC. CALMET (Version 6.326) used the CALTAPM output to produce a meteorological file suitable for use with CALPUFF thereby ensuring that the meteorological data used for both models was essentially the same.

5.1.3 Discrete Receptors

Fourteen receptor locations were identified for inclusion into the air dispersion modelling report and the screening HHRA as presented in Table 11. Eleven of the identified receptors were within the Anglesea town with the remaining three being located to the west (Bald Hills) and north (Forest Road and Water Basin) of Anglesea. These receptor locations were selected to represent a range of community facilities, residential areas, and sensitive receptors (e.g. Primary School). The receptor locations are considered to represent the range of potential public exposure to atmospheric emissions from the Power Station.

The locations of the receptors in relation to the Alcoa site are presented in Figure 20, overlain on a map of the local area. For purposes of this assessment all receptors are assumed to be residents, including potentially sensitive subpopulations such as children and the elderly.

Table 11: Summary of Discrete Receptors						
Receptor		Distance/Direction from	GDA Coordinates			
		Alcoa Site	East (m)	North (m)		
1	Mt Ingoldsby / CFA Hut	3.1 km south	252,313	5,744,535		
2	Bald Hills Road	5.7 km south-west	248,373	5,748,356		
3	Water Basin	3.7 km north	254,613	5,751,195		
4	Forest Road	2.7 km north-east	255,693	5,749,546		
5	Scout Camp	2.6 km east	256,643	5,746,326		
6	Primary School ^[1]	1.2 km south-east	254,635	5,746,129		
7	Camp Road	1 km south-east	254,862	5,746,465		
8	Community Centre	2.2 km south-east	254,266	5,745,210		
9	Camp Wilkin	2.5 km south-east	253,548	5,745,288		
10	Anglesea Surf Club	3.2 km south-west	254,334	5,744,588		
11	Waste Treatment Plant	2.4 km south-east	255,413	5,745,616		
12	Anglesea Caravan Park	3 km south-east	255,059	5,745,378		
13	Fraser Avenue	1.8 km south-west	253,501	5,745,984		
14	Pt Road Knight Carpark	4.2 km south	253,906	5,743,102		
Notes: [1] In May 2011 the Primary School SO ₂ monitoring station was moved to Anglesea Bowling Club – GDA94						

 In May 2011 the Primary School SO₂ monitoring station was moved to Anglesea Bowling Club – GDA94 Coordinates 254,985 mE, 5745,299 mN, 0.9km south of the original location. For the purposes of this report the old location is used as validation is conducted using 2008-2011 data.
Receptors 1,5,6,7,8 and 9 are the continuous ambient SO₂ monitoring sites.

5.1.4 Cumulative Impacts

To provide an indication of the cumulative impact that the Anglesea Power Station and coal mine emissions have on the regional air shed, the background ambient concentration of compounds were considered in the assessment. Background concentrations can arise from anthropogenic and non-anthropogenic activities in the study area.

Background concentrations were calculated based the SEPP (AQM) approach of using the 70th percentile concentrations.

The background concentrations adopted for this assessment have been presented in Table 12. The 70th percentile of all 1-hour and 24-hour average concentrations recorded at the monitoring stations has been adopted as the background concentration.
Table 12: Background Concentrations							
Air Quality Parameter	Averaging Period	Background Level (μg/m ³)	Source				
SO ₂	1-hour	2					
PM ₁₀	1-hour	18					
PM _{2.5}	1-hour	5	70 th percentile of observed data				
PM ₁₀	24-hour	17					
PM _{2.5}	24-hour	5					
Note: Background concentrations expressed at STP (0°C and 101.325 kPa)							

Background concentrations could not be estimated for NO₂, carbon monoxide or other Class 2 and 3 indicators due to the absence of ambient monitoring data.

5.2 Model Validation

In order to obtain a measure of performance of the air dispersion model, the predicted meteorology and ambient SO₂ and particulate concentrations were compared to the ambient monitoring data collected by Alcoa. Air dispersion modelling has some inherent uncertainties and the USEPA (2001) indicates that modelling typically has inaccuracies of $\pm 10\%$ to $\pm 40\%$. Ambient monitoring is also associated with a number of inaccuracies, which increase as the monitored values approach the threshold of detection. Typically measurement uncertainty ranges between $\pm 5\%$ and $\pm 10\%$.

The model evaluation included comparison of wind speed and wind direction probability density function plots of observed vs. predicted data and a statistical evaluation. The statistical measures and the performance evaluation criteria were sourced from the following publications:

- 1 USEPA-454/R-92-025, Protocol for Determining the Best Performing Model. This document presents a statistical method for comparing the performance of models using classical statistical techniques.
- 2 ASTM D 6589, Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance. This documents methods and provides a program to evaluate model performance.

The statistical measures used to evaluate the predicted wind speeds were:

- 1 Index of Agreement (IOA): IOA reflects how well the predicted data estimates the observed mean are represented. Hurley (2000) suggests that an IOA of 0.5 or greater represents a good correlation. An IOA of 1 means a perfect correlation between predicted and observed.
- 2 **Root mean square error (RMSE):** This is an acceptable average measure of the difference or error between predicted and observed values. Low RMSE values in a model indicate that the model is explaining most of the variation in the observations.

3 **Systematic (RMSE_S) and Unsystematic RMSE (RMSE_U):** If the model is unbiased rmse_s should approach 0 and rmse_u should be close to rmse.

In addition, model acceptability criteria summarized by Chang and Hanna (2004) based on extensive experience concluded that for comparison of predicted and observed values (unpaired in space) "acceptable" performing models have the following typical performance measures.

- 1 **Fractional Bias (FB):** The fraction of predictions within a factor of two of observations is about 50% or greater (i.e. FAC2>0.5).
- 2 **Geometric mean bias (GM):** The mean bias is within +30% of the mean (i.e. roughly |FB | <0.3 or 0.7<GM<1.3).
- 3 Random Scatter as Normalized mean square error (NMSE) and Geometric Variance (VG): The random scatter is about a factor of two to three of the mean (i.e., roughly NMSE <1.5 or VG<4).</p>
- 4 **Standard Deviation (Predicted and Observed).** A model is predicting with skill if the standard deviations of the predictions and observations are approximately the same (Piekle 1984).

A summary of the statistical measures used to assess the performance of TAPM with respect to wind speed are presented in Table 13 together with the results of the valuation.

Table 13: Performance Evaluation Summary – Wind Speed (2008-2012)							
Statistical Mathed	Porformance Evaluation Critoria	Result					
Otatistical method	Performance Evaluation Chiena	Anglesea Meteorological Site					
RMSE	<2	1.75					
IOA	>60%	83%					
Fractional Bias	>-0.3 and <0.3	-0.04					
NMSE	<1.5	0.19					
SD Observed	n/a	2.43					
SD Predicted	n/a	1.99					
Max Observed	n/a	19.3					
Max Predicted	n/a	15.3					
Avg Observed	n/a	3.9					
Avg Predicted	n/a	4.1					

The model evaluation results indicate that TAPM's skill level in predicting the wind speed is acceptable based on the comparison with the Anglesea monitoring data. The performance of TAPM at Anglesea is comparable to its performance observed at other sites in Australia based on ENVIRON's experience.

Plots of predicted and observed wind speed and wind direction are presented in Figures 21 and 22. These figures indicate that the winds are generally well predicted by the model. TAPM over predicts the frequency of winds between 2 and 4 m/s at the Anglesea meteorological station and under predicts the lighter winds. Wind direction is generally well predicted by the model with a marginal under prediction of the southerly component of winds and an over prediction of the south westerly component.

5.2.1 Model Validation – Sulphur Dioxide

The performance of TAPM was validated against the measured ambient SO_2 concentrations. The predicted SO_2 concentrations were compared to the observed SO_2 concentrations at the six ambient monitoring sites (i.e. CFA Hut, Primary School, Camp Rd, Scout Camp, Camp Wilkin and Community Centre). Figures 23 to 28 and Table 14 present the results of the evaluation of TAPM's performance for ambient SO_2 concentrations.

Table 14: Predicted and Observed Ground Level Concentration SO2 – 2008- 2012							
	Comm Centre (µg/m ³)	Primary School (µg/m³)	Scout Camp (µg/m³)	Camp Wilkin (µg/m³)	CFA Hut (µg/m³)	Camp Rd (µg/m³)	
Average Observed	3	5	10	3	3	6	
Average Predicted	3	2	5	2	2	2	
	1-	Hour Avera	ge Concent	rations			
Max Observed	511	516	606	547	583	585	
Max Predicted	1291	692	538	1303	1036	1375	
99.9th Percentile Observed	249	342	386	309	263	348	
99.9th Percentile Predicted	255	208	385	294	270	263	
99.0th Percentile Observed	63	134	219	63	50	166	
99.0th Percentile Predicted	88	47	198	59	36	65	
95.0th Percentile Observed	9	19	53	8	10	14	
95.0th Percentile Predicted	7	2	14	2	1	3	
RHC ^[1] Observed	452	488	495	470	452	472	
RHC Predicted	570	417	497	613	691	580	
Notes All statistics based on hourly timeframe							

Concentrations are expressed at 0°C and 101.325 kPa

[1] RHC - Robust highest concentration

The SO₂ model validation results indicate that the maximum 1-hour averaged concentration predicted over the five year period is over-predicted by the model at five of the monitoring locations with only the predicted concentrations at the Scout Camp being less than those measured. The 99.9th percentile concentration is well predicted at four of the monitoring sites and is under-predicted at the Primary School and Camp Road sites. As the compared percentile concentrations decreases, there is general under prediction of the predicted concentrations based on the observed data. It is considered that these under-predictions are likely to be associated with changes in the emission characteristics (i.e. emission volume, temperature, and emission rate) over the conditions modelled, changes in the wind direction over the modelled hour and differences between the predicted and observed meteorological conditions.

An important test for pollution management and regulatory applications is whether the model can correctly predict the extreme (or high) end of the concentration frequency distribution constructed using data collected over a year. The robust highest concentration (RHC) (Cox and Tikvart, 1990) as expressed by Equation 2 can be used for quantitative evaluation.

$$RHC = C(R) + (C - C(R)) \ln(3R-1)$$
 Equation 2

Where:

C(R) is the Rth highest concentration; and

C is the mean of the top R - 1 concentrations.

The RHC is based on an exponential fit to the highest R - 1 values of the cumulative frequency distribution. A value of R = 11 has been used in this analysis so that C is the average of the top ten concentrations, which is an accepted statistic for evaluation of model performance (Hanna, 1988). The RHC is preferred to the maximum value because it mitigates the undesirable influence of unusual (stochastic) events, while still representing the magnitude of the maximum concentration (unlike percentiles). Based on the results in Table 14, the RHC is over-predicted at four of the six monitoring sites (i.e. Community Centre, Camp Wilkin, CFA Hut and Camp Rd) by between 23% and 56%. The RHC is under-predicted at Primary School by 15% and is well predicted at the Scout Camp.

The comparison between predictions and observed data shows that the model performance for estimating the SO_2 concentrations is satisfactory given assumptions made (i.e. constant emission volume and temperature) in the modelling.

5.2.2 Model Validation – Fugitive Dust

The performance of CALPUFF was validated against the observed ambient dust concentrations for the six months of available ambient monitoring data for the three monitoring sites (i.e. Camp Rd, Camp Wilkin and Barwon Water). Figures 29 to 31 and Table 15 present the results of the evaluation of CALPUFF's performance for ambient dust concentrations.

	Camp	Comp	Comp	Camp	Barwon	Barwon
Statistics	Rd Site (PM ₁₀)	Camp Rd Site (PM _{2.5})	Wilkin Site (PM ₁₀)	Wilkin Site (PM25)	Water (PM ₁₀)	Water
	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m³)
Average Observed	14	2	17	5	13	5
Average Predicted	17.9	5.3	18.3	5.5	17.2	5.1
	1-Hou	r Average C	Concentratio	ons		
Max Observed	205	31	112	89	137	26
Max Predicted	110	54	170	66	80	37
99.9 th Percentile Observed	85	24	69	39	114	23
99.9 th Percentile Predicted	71	27	86	37	45	18
99.0 th Percentile Observed	46	14	51	22	38	17
99.0 th Percentile Predicted	32	10	41	14	24	8
95.0 th Percentile Observed	32	9	37	13	28	11
95.0 th Percentile Predicted	23	7	24	8	18	5
RHC Observed	95	23	73	47	91	23
RHC Predicted	77	30	98	39	49	19
	24-Hou	Ir Average	Concentrati	ons		
Max Observed	41.8	9	40.8	19.5	32.7	13.2
Max Predicted	36.2	11.3	36.0	13.1	25.3	8.9
99.9 th Percentile Observed	40.8	8.8	40.3	18.4	32.6	12.8
99.9 th Percentile Predicted	34.9	11.1	35.7	12.6	24.9	8.7
99.0 th Percentile Observed	33.2	7.7	36.6	11.2	31.9	10.3
99.0 th Percentile Predicted	27.6	9.3	32.8	10.2	21.3	7.0
95.0 th Percentile Observed	24.3	6	28.8	9.6	23	8.4
95.0 th Percentile Predicted	24.8	7.8	24.4	7.7	19.2	5.8
RHC Observed	29	7	31.6	11.1	26.2	9.5
RHC Predicted	26.7	8.6	28.4	9.1	20.5	6.4

Concentrations are expressed at 0°C and 101.325 kPa

The dust modelling validation results indicate that the maximum and RHC predicted 1-hour average concentrations of PM_{10} for the six month period is under predicted by the model at Camp Rd and Barwon Water sites and over predicted at the Camp Wilkin site. The Barwon Water site is situated well over 3 km from the coal mine and power station and therefore the measured ambient particulate concentrations are not expected to be significantly influenced by Alcoa's Anglesea operations. The higher measured concentrations at the Barwon Water are likely to be due to periodic local or regional (e.g. smoke from bushfires) that are not captured within the background concentrations included in the modelling.

The dust modelling validation results indicate that the maximum and RHC predicted 24-hour average concentrations of PM_{10} in the six months are under-predicted by small margins at all sites. As for the 1-hour concentrations, the predicted concentrations at the Barwon Water site were under-predicted by the most significant margin which indicates that other local or regional sources not considered in the modelling are contributing to the measured concentrations.

The annual average PM_{10} concentrations at all of the monitoring sites are predicted to be slightly higher than those recorded. It should be noted that the background concentration (17 µg/m³) was the major contributing factor to the predicted annual average concentrations for PM_{10} . Therefore, any change to the background concentration used in the modelling will impact on the model comparisons.

The comparison between the measured and predicted $PM_{2.5}$ concentrations shows similar outcomes to those found for PM_{10} with over- and under-predictions at the different monitoring sites.

Overall, the results of the model validation study indicate that the air dispersion modelling is predicting the ground level concentrations, particularly the 24-hour average concentrations RHC, at a satisfactory level of accuracy.

5.3 Model Results

The predicted 99.9th 1-hour (i.e. 44th highest) and 99.5th 24-hour (i.e. 9th highest) ground level concentrations for the modelled years (2008-2012) are presented in Table 16 and compared against the SEPP (AQM) criteria.

Concentration isopleths for selected compounds and predicted concentrations at discrete receptors are presented as Appendix E. The predicted concentrations presented in Table 16 represent those predicted for the Anglesea power station and the coal mine emissions considered in isolation due to the absence of any background concentration data for all compounds other than SO_2 and particulates.

Table 16: Predicted Concentration of Compounds in the Modelled Domain ¹							
Pollutant	Averaging Period	Alcoa Only ^[2] Concentration in Modelled Domain outside Plant Boundary	SEPP (AQM) design ground level concentration				
		μg/m ³	μg/m³				
SO ₂	1h	859	450 (170 ppb)				
PM _{2.5}	1h	168	50				
PM ₁₀	1h	475	80				
NO ₂	1h	71	190				
со	1h	1.9	29,000				
Total Fluoride	24h	0.1	3				
Antimony	3 min 0.003		17				
HCI	3 min	5.2	250				
Chlorine	3 min	0.008	100				
Arsenic	3 min	0.0025	0.17				
Cadmium	3 min	0.0002	0.03				
Chromium (III)	3 min	0.02	17				
Chromium (VI)	3 min	0.02	0.17				
Copper	3 min	0.07	6.7				
Benzene	3 min	0.004	53				
Beryllium	3 min	0.002	0.007				
Lead	1h	0.02	3				
Manganese	3 min	0.005	33				
Mercury	3 min	0.001	0.33				
Nickel	3 min	0.02	0.33				
Benzo[a]pyrene	3 min	0.03	0.73				
Dioxins and Furans ³	3 min	3.8x10 ⁻⁹	3.7 x 10 ⁻⁶				
		Alcoa Only ^[2] Concentration in Modelled Domain outside Plant Boundary (μg/m ³)	Texas Commission on Environmental Quality (TCEQ) Effects Screening Levels (2009) – Air Quality Objective (µg/m ³)				
Doron	1h	0.8	50				
BOLOU	Annual	0.02	5				

Notes:

1. 99.9th percentile values were used for compounds with an averaging periods of 1hr or less and 99.5th percentile concentrations were used for compounds with averaging periods greater than 1hr.

2. Background Concentrations not included.

3. The Toxic Equivalent (TEQ) values have been calculated using the toxicity equivalence factors (TEF) according to the Van den Berg *et al* (2006). The toxicity is assessed by multiplying a congener's concentration with its TEF and summing the resulting values to derive the TEQ emission. The most toxic congener is 2,3,7,8-Tetracholorodibenzodioxin (TCDD) which has a factor of one, with all other 2,3,7,and 8 congeners failing between 0.0001 and one.

Concentrations are expressed at 25°C and 101.325 kPa

The modelling results indicate that PM_{10} , $PM_{2.5}$ and SO_2 are predicted to exceed the SEPP (AQM) design ground level concentration criteria within the model domain. The contours of the predicted 1-hour average concentrations of SO_2 , PM_{10} and $PM_{2.5}$ are presented as Figures E1, E6 and E7 respectively in Appendix E.

5.4 Air Dispersion Modelling Key Findings and Conclusions

The key findings of the air dispersion modelling assessment are:

- 1 The model validation indicated that both the meteorology and dispersion of compounds from the power station and coal mine are well predicted in the modelled domain.
- 2 The 99.9th percentile 1-hour average concentrations of SO_2 are predicted to exceed the SEPP (AQM) (450 μ g/m³) design criteria to the west and north of the power station. Therefore SO_2 has been included in the screening HHRA.
- 3 The 99.9th percentile 1-hour average concentrations of PM_{10} are predicted to exceed the SEPP (AQM) design criteria (80 μ g/m³) in the areas near the coal mine crusher and permanent stockpile and to the north-west of the power station. Therefore PM_{10} has been included in the screening HHRA.
- 4 The 99.9th percentile 1-hour concentrations of $PM_{2.5}$ are predicted to exceed the SEPP (AQM) design criteria (50 μ g/m³) in the areas of near the coal mine crusher and permanent stockpile. Therefore $PM_{2.5}$ has been included in the screening HHRA.
- 5 The predicted concentrations for all other compounds considered in this assessment were below the SEPP (AQM) design criteria guidelines and are therefore were not included in the screening HHRA.

6 Screening Human Health Risk Assessment

6.1 Background

Risk assessment provides a systematic approach for characterising the nature and magnitude of the risks associated with environmental health hazards, and is an important tool for decision-making. enHealth (2012) describe the five stages of a health risk assessment as being:

- 1. **Issue identification**. Defines the reasons for the risk assessment being conducted including identifying the existing environmental conditions, potential populations that may be exposed, exposure pathways and exposure mitigation options.
- 2. **Hazard identification**. Identifies the guideline values for each chemical considered within the risk assessment where these are available. Where the risk assessment is associated with the establishment of such guidelines, the hazard identification will generally include detailed literature reviews on toxicity and dose-response relationships.
- 3. **Dose response assessment**. Identifies the quantitative relationship between exposure and effects of concern including the response from different population sub-groups.
- 4. **Exposure assessment**. Defines the magnitude, frequency, duration and routes of exposure to compounds present in the environment. In this assessment, exposure is estimated as the concentration of a compound that a person may be exposed to over both short-term (i.e. acute) and long-term (i.e. chronic) exposure periods. The results of the air dispersion modelling presented in Section 5 have been used to provide the data used in the exposure assessment.
- 5. **Risk Characterisation**. Determines if exposures to the chemicals of potential concern comply with the health based guideline values. It also identifies potential sources of uncertainty and the extent to which the outcomes of the risk assessment may be affected.

6.1.1 Issue Identification

The Anglesea Power Station and Coal Mine are located to the north and north-west of the town of Anglesea. Alcoa commenced ambient SO_2 monitoring in Anglesea in 1999 at the CFA Hut site. In 2009 Alcoa developed and implemented an AQCS with the objective of ensuring that the power station operations were managed such that the NEPM 1-hour average ambient standard for SO_2 was not exceeded in the town of Anglesea.

In 2012, an ambient PM_{10} and $PM_{2.5}$ monitoring program was commenced in the vicinity of the coal mine and the power station to gather data on ambient particulate concentrations that occur in the Anglesea area.

The atmospheric emissions from the Anglesea Power Station and coal mine contain a number of compounds in addition to SO_2 and particulates. The air dispersion modelling study and screening HHRA has been undertaken in order to assess the potential health risks that may arise from the atmospheric emissions impacting upon the Anglesea community.

As part of the air dispersion modelling study a comprehensive emission inventory was developed (see Section 2.3 and Section 3.4). This inventory identified 39 individual compounds or groups of compounds that were included in the air dispersion modelling study (Section 5). The predicted ground level concentrations were compared to the design criteria specified in the SEPP (AQM). Of the compounds modelled, only SO₂, PM₁₀ and PM_{2.5} did not meet the SEPP (AQM) design criteria. The SEPP (AQM) states that where the design criteria are not met, a health risk assessment may be undertaken and therefore SO₂, PM₁₀ and PM_{2.5} were considered in the screening HHRA.

6.1.2 Hazard Identification and Dose Response

 SO_2 , PM_{10} and $PM_{2.5}$ have been considered in the screening HHRA. Information relating to each of these compounds and the current NEPM air quality standards is presented in the following sections.

Sulphur Dioxide

 SO_2 is a colourless, irritating and reactive gas with a strong odour. SO_2 is highly soluble and is quickly absorbed in the moist environment of the upper or lower airways of the respiratory tract, where it exerts its adverse effect.

Exposure to SO₂ can create an acute response including coughing, wheezing, aggravation of asthma, and irritation eyes.

Many organisations including the World Health Organisation (WHO) (2006), USEPA (2008 and 2009), RAT (2010) and NEPC (2011) have documented the potential health effects associated with exposure to SO_2 based on the available research. In general these studies have found that asthmatics in particular, and to a lesser extent the young and the elderly, are more susceptible to short term health impacts arising from exposure to SO_2 . The studies have also found that exercising asthmatics are generally more susceptible than resting asthmatics, but that the response is very variable within this sub-population.

Asthmatics have been shown to respond very quickly (within minutes) and respond to a wide range of exposure concentrations which means that a threshold concentration cannot be readily determined. Epidemiological studies have also shown an association between short-term exposures and increases in daily mortality from respiratory and cardiovascular effects (NEPC, 2011).

The WHO (2006) concluded that the minimum concentration that evoked changes in the lung function in exercising asthmatics was in the order of 0.4 ppm (or 1,144 μ g/m³). The WHO (2006) recommended that its existing 10-minute average guideline of 500 μ g/m³ be retained to provide health protection to exercising asthmatics. The derivation of this guideline included a safety factor of two over that concentration observed to evoke changes in lung function in sensitive exercising asthmatics. The health effects arising from short term

exposure to SO_2 are themselves short-term. The WHO (2006) also recommended a 24-hour average guideline of 20 μ g/m³ based on epidemiological studies conducted for cities including Hong Kong and London. The WHO (2006) indicated that there was considerable uncertainty as to whether SO_2 was the pollutant responsible for the observed effect noting that SO_2 was not considered to be causal to reduced mortality in Germany and the Netherlands.

The USEPA (2008) concluded that a greater portion of exercising asthmatics would experience an increase in the respiratory effects with increasing SO_2 exposure concentrations between 0.2 ppm and 1 ppm with exposure times of 5 to 10 minutes.

The findings of the NEPC (2011) review of the SO_2 health evidence indicated that health effects are observed at current levels of SO_2 in Australian cities which are well below the NEPM standard. The effects are greatest in people with asthma.

Particulates

Particulate matter can consist of a single compound but is more often comprised of a mixture of many different compounds each of which can have different chemical and physical characteristics. Research findings on exposure and risks are complicated by these variable characteristics and different particle sizes. Particulate matter is classified as a function of its aerodynamic diameter as this is important in determining its penetration into the respiratory tract. The USEPA promulgated standards for PM_{10} and $PM_{2.5}$ in 1987 and 1997 respectively (USEPA, 1987, 1997). PM_{10} includes those inhalable particles that are sufficiently small to penetrate to the thoracic region. $PM_{2.5}$, the fine fraction of PM_{10} , is considered to have a high probability of deposition in the smaller conducting airways and alveoli (WHO, 2006).

The toxicity of particulate matter may result from one or more factors, including the actions of the particulate composition, and its presence in the body. The WHO (2006) reported that the US National Research Council (2004) provided a summary table of particle characteristics that may be important to health responses, including size mode, mass concentration, number concentration, acidity, particle surface chemistry, particle core chemistry, metals, carbon (organic carbon and black or elemental carbon), biogenic origin, secondary inorganic aerosols, and material associated with the earth's crust. Other characteristics that have been recognised as potentially playing a role in toxicity are particle surface area, chemical reactivity, water solubility of constituent chemicals and the geometric form of the particles.

The NEPC (2011) found that there is substantial evidence that both short-term and long-term effects for PM_{10} and $PM_{2.5}$ exposure are associated with increases in mortality and morbidity. Particulate exposure can result in cardiovascular and respiratory effects, particularly respiratory disease, asthma and chronic obstructive pulmonary disease, while there are strong associations with ischemic heart disease and congestive heart failure (NEPC, 2011).

Sulphur Dioxide and Particulate Matter

Ambient air quality guidelines are generally associated with single compounds but exposure to a specific compound in the absence of other compounds is rare. Exposure to mixtures of chemicals could result in additive, synergistic or antagonistic effects being observed. The WHO (2006) state the observational studies have not resolved the issue of confounding

between SO_2 and particulate matter or other pollutants, nor have they systematically examined the synergistic effects. Generally, when multiple pollutants were evaluated, particulate matter tended to be more strongly associated with mortality or morbidity outcomes than SO_2 (WHO, 2006). In the absence of definitive studies additive, synergistic or antagonistic effects have not been considered in this screening HHRA.

Ambient Air Quality Guidelines

In 2008 the NEPC made the Ambient Air NEPM that set uniform national ambient air quality standards. The desired outcome of the NEPM "is ambient air quality that allows for the adequate protection of human health and well-being." (Australian Government, 2003). In 2003 the Ambient Air NEPM was revised to include PM_{2.5}.

A review of the NEPM commenced in 2007 with the release of a discussion paper (NEPC, 2007) and in May 2011 the NEPC produced a review report (NEPC, 2011) that makes a number of recommendations regarding the future of the NEPM including a shift in focus. One such shift is the acknowledgement that many compounds do not have a recognised threshold for adverse health impacts and therefore includes a recommendation to incorporate exposure reduction targets for priority pollutants. The implementation of the AQCS is an example of a program aimed at reducing population exposure to SO₂.

The Victorian State Environment Protection Policy (Ambient Air Quality) (EPAV, 2001b) (SEPP (AAQ)) specifically adopts the requirements of the Ambient Air NEPM. While they are currently under review, the NEPM ambient air quality standards represent the currently accepted standards in Australia and have therefore been used in this screening HHRA.

Table 17: Summary of the NEPM Standards Used									
Compound	Guideline	Units	Reference						
Acute Health Effects									
Sulphur dioxide	524	µg/m³	1 h	NEPC					
	209	µg/m³	24 h	NEPC					
PM ₁₀	46	µg/m³	24 h	NEPC					
PM _{2.5}	23	µg/m³	24 h	NEPC ^[1]					
	Chro	nic Health E	ffects						
Sulphur dioxide	52	µg/m³	Annual	NEPC					
PM _{2.5}	7	µg/m³	Annual	NEPC					
Notes:									
 NEPM Advisory Reporting Standard Concentrations are expressed at 25°C and 1 atm pressure 									

Table 17 presents a summary of the NEPM standards for SO₂, PM₁₀ and PM_{2.5}.

TAPM or CALPUFF do not correct the predicted concentrations for temperature. ENVIRON has assumed that the predicted concentrations are associated with an ambient temperature of 25°C.

6.1.3 Exposed Population

As discussed in Section 5.1.3, 14 receptor locations were identified for inclusion into the screening HHRA. The receptor locations were selected to represent a range of community facilities, residential areas, and sensitive receptors (e.g. Primary School). The receptor locations are considered to represent the range of potential public exposure to atmospheric emissions from the Power Station.

The locations of the receptors are presented as Figure 20, overlain on a map of the area. For purposes of this screening assessment, all receptor locations are assumed to be residential in nature, and therefore include potentially sensitive subpopulations such as children and the elderly. The potential health risks associated with the power station and coal mine atmospheric emissions for locations other than the 14 discrete receptors identified above can be estimated from the contours.

6.1.4 Exposure Pathways

Inhalation is expected to represent the most significant exposure pathway for the atmospheric emission from the power station and coal mine.

Whilst particulates and associated compounds such as metals (e.g. arsenic, cadmium and nickel) and hydrogen fluoride are likely to contribute to multi-pathway exposures (i.e. indirect exposure pathways such as soil ingestion, dermal, vegetable ingestion and water ingestion), these other exposure pathways are expected to be a minor contributor to the cumulative human health risks from Alcoa's Anglesea operations as the predicted concentrations at the nearby discrete receptors are relatively low. Therefore, multi-pathway exposure has not been assessed in this screening HHRA.

6.1.5 Estimated Concentrations in Air

The ambient concentrations of the nominated contaminants have been derived from the results of the air dispersion modelling presented in Section 5.

The predicted 99.9th percentile 1-hour average, 99.5th percentile 24-hour average, and average concentrations predicted over the five years modelled have been used in the screening HHRA. These percentile concentrations have been used to represent the actual exposure concentration that is expected to occur across the model domain.

The comparison between the predicted and measured SO_2 and particulate concentrations indicated that this was within reasonable margin of accuracy of actual exposure concentrations over 5 years. Variable background concentrations and changes in emission characteristics which are not accounted for in the model may contribute to the difference between observed and predicted results.

6.2 Exposure Assessment

6.2.1 Quantitative Risk Indicators

The Hazard Index (HI) is calculated to evaluate the potential for adverse health effects from simultaneous exposure to multiple compounds by summing the ratio of the estimated exposure concentration in air to the health protective guidelines for individual compounds. The HI is calculated for acute (Equation 3) and chronic (Equation 4) exposures.

$$HI_{Acute} = \sum^{i} \frac{C_{\leq 24h}}{Gdl_{Acute}}$$
Equation 3
$$HI_{Chronic} = \sum^{i} \frac{C_{Annual}}{Gdl_{Chronic}}$$
Equation 4

Where:

HI_{Acute}	= acute Hazard Index
$C_{\leq 24h}$	= ground level concentration predicted over an averaging period of typically
	\leq 24 hours, matching the averaging time of the health protective guideline for each compound (µg/m ³)
Gdl_{Acute}	= acute health protective guideline for each compound (μ g/m ³)
$HI_{Chronic}$	= chronic Hazard Index
C _{Annual}	= long term (annual) average ground level concentration predicted for each
	compound (µg/m³)
$Gdl_{Chronic}$	= chronic health protective guideline for each compound (μg/m ³)

For the screening HHRA the acute HI has been determined from the predicted 99.9th percentile 1-hour and 99.5th percentile 24-hour average ground level concentrations predicted by the air dispersion modelling over the 2008 to 2012 period. The chronic HI was calculated from the predicted average concentrations over the same five year period.

Only the three compounds that did not meet the SEPP (AQM) design criteria (i.e. SO_2 , PM_{10} and $PM_{2.5}$) were included in the screening HHRA. As such, the individual Hazard Quotients (HQs) for each compound (i.e. the ratio of the predicted compound concentration to the health protective guideline) have also been calculated and considered in this assessment.

6.2.2 Acute Effects

Tables 18 and 19 present the acute HIs calculated for the predicted ground level concentrations resulting from the power station and coal mine atmospheric emissions in combination with the background concentrations. Figures 32 to 35 present contours of the calculated HIs for the model domain. Separate HIs have been calculated for combining PM_{10} and $PM_{2.5}$ with SO₂ to prevent the "double accounting" of $PM_{2.5}$ that is already included as part of the PM_{10} concentrations. The HIs have been calculated as composite acute HI which is calculated on the basis of the SO₂ 1-hour and PM_{10} (or $PM_{2.5}$) 24-hour HQs and a 24hr acute HI which is based on the HQs for the SO₂ and PM_{10} (or $PM_{2.5}$) 24-hour concentrations.

Table 18 and Figure 32 present the calculated acute HIs for SO_2 and PM_{10} . The maximum acute HI for SO_2 and PM_{10} is predicted to occur at the coal mine and is above the threshold of one. The composite acute HI was predicted to be greater than one at the majority of the receptors. These composite acute HIs were primarily associated with the emissions of PM_{10} from the coal mine in combination with the background concentrations for those receptors closer to the mine site. SO_2 was the primary contributor to the composite HI at the Water Basin receptor while for the other receptors both SO_2 and PM_{10} (including background) contributed.

An analysis of the predicted concentrations associated with the maximum composite HIs as can be seen in Table 20 for Fraser Avenue indicated that the 99.5th percentile 24-hour PM_{10} concentrations occurred at different times to when the 99.9th percentile 1-hour SO_2 concentration occurred. The data in Table 20 also indicate that the predicted 1-hour average SO_2 concentrations were zero on the day associated with the predicted 99.5th percentile 24-hour PM_{10} and $PM_{2.5}$ concentrations. Appendix F presents an analysis of the predicted concentrations or $SO_2 PM_{10}$ and $PM_{2.5}$ associated with the maximum HQ for each monitoring site.

For all receptors other than Fraser Avenue, the individual PM_{10} and SO_2 HQs were less than one indicating that the predicted PM_{10} and SO_2 percentile concentrations considered in the screening HHRA were below the relevant NEPM ambient standards. For Fraser Avenue the 99.5th percentile 24-hour average PM_{10} concentration (i.e. Alcoa's predicted concentration plus the background concentration) was predicted to be in excess of the relevant NEPM standard. Of this Alcoa's operations were predicted to have contributed approximately 70% of the 24-hour concentration. The NEPM goal for PM_{10} is to have no more than five days where the NEPM standard is exceeded. Further analysis of the modelling data indicates that the sixth highest 24-hour average concentrations predicted at Fraser Avenue are well below the NEPM standard for each of the five years modelled. The Fraser Avenue receptor is located between the Camp Wilkin and Camp Road ambient particulate monitoring sites and these sites have not yet recorded any exceedances of the NEPM standard. While no exceedances of the NEPM standard have been recorded, the air dispersion modelling indicates the potential for this to occur albeit infrequently.

The calculated 24Hr acute HIs presented in Table 18 and Figure 33 are generally lower than the composite HIs as a result of the fact that the HQ for the 24-hour average SO_2 concentration is less than that for the 1-hour average SO_2 concentration.

Table 19 and Figure 34 presents the calculated acute HIs considering SO_2 and $PM_{2.5}$. Figure 34 shows that the acute HI was predicted to be greater than one in the vicinity of the coal mine (due to $PM_{2.5}$), and also to the north and north-west of the power station (due to SO_2). Table 19 shows that the composite acute HI is predicted to be less than one at all receptors except the Water Basin, Camp Wilkin, and Fraser Avenue. At the Water Basin, the composite HI greater than one is primarily attributable with SO_2 whereas at Fraser Avenue it is primarily attributable to $PM_{2.5}$. At Camp Wilkin, SO_2 and $PM_{2.5}$ contribute a similar percentage to the composite HI. In all cases the HQs for both SO_2 and $PM_{2.5}$ are less than one and the 99.5th percentile 24-hour $PM_{2.5}$ concentrations occurred at different times to when the 99.9th percentile 1-hour SO_2 concentration occurred.

Table 18: Calculated Acute Hazard Indices (SO ₂ and PM ₁₀)										
Decenter		Concentration (µg/m ³)			Н	Hazard Quotient			Acute HI	
No.	Description	SO ₂ 1-Hr	SO ₂ 24-Hr	PM ₁₀ 24-Hr	SO ₂ 1-Hr	SO ₂ 24-Hr	PM ₁₀ 24-Hr	Composite Acute HI	24Hr Acute HI	
1	CFA Hut	248	37.6	33.4	0.47	0.18	0.73	1.20	0.91	
2	Bald Hills Road	307	63.7	19.9	0.58	0.30	0.43	1.01	0.73	
3	Water Basin	454	114.4	18.8	0.87	0.55	0.41	1.28	0.96	
4	Forest Road	284	52.8	18.4	0.54	0.25	0.40	0.94	0.65	
5	Scout Camp	354	93.1	20.6	0.68	0.45	0.45	1.13	0.90	
6	Primary School	247	42.5	28.9	0.47	0.20	0.63	1.10	0.83	
7	Camp Road	235	53.3	25.6	0.45	0.26	0.56	1.01	0.82	
8	Community Centre	271	45.7	24.2	0.52	0.22	0.53	1.05	0.75	
9	Camp Wilkin	266	47.5	38.2	0.51	0.23	0.83	1.34	1.06	
10	Anglesea Surf Club	275	47.0	22.0	0.53	0.22	0.48	1.01	0.70	
11	Waste Treatment Plant	322	65.5	23.0	0.61	0.31	0.50	1.11	0.81	
12	Anglesea Caravan Park	299	49.4	22.7	0.57	0.24	0.49	1.06	0.73	
13	Fraser Avenue	214	32.0	51.7	0.41	0.15	1.12	1.53	1.27	
14	Pt Road Knight Carpark	218	41.2	20.6	0.42	0.20	0.45	0.87	0.65	

Notes:

Composite Acute HI is based on the Acute HQ of SO₂ 1-hour and PM₁₀ 24-hour.
 24hr Acute HI is based on the Acute HQ of SO₂ 24-hour and PM₁₀ 24-hour.
 Concentrations expressed at 25°C and 101.325 kPa.

Table 19: Calculated Acute Hazard Indices (SO ₂ and PM _{2.5})										
December		Co	oncentration	(µg/m³)		Hazard Quotient			Acute HI	
No.	Description	SO₂ 1-Hr	SO ₂ 24-Hr	PM _{2.5} 24-Hr	SO ₂ 1-Hr	SO ₂ 24-Hr	PM _{2.5} 24-Hr	Composite Acute HI	24hr Acute HI	
1	CFA Hut	248	37.6	10.4	0.47	0.18	0.45	0.92	0.63	
2	Bald Hills Road	307	63.7	6.2	0.58	0.30	0.27	0.85	0.57	
3	Water Basin	454	114.4	5.8	0.87	0.55	0.25	1.12	0.80	
4	Forest Road	284	52.8	5.6	0.54	0.25	0.24	0.78	0.49	
5	Scout Camp	354	93.1	6.5	0.68	0.45	0.28	0.96	0.73	
6	Primary School	247	42.5	10.3	0.47	0.20	0.45	0.92	0.65	
7	Camp Road	235	53.3	9.2	0.45	0.26	0.40	0.85	0.66	
8	Community Centre	271	45.7	8	0.52	0.22	0.35	0.87	0.57	
9	Camp Wilkin	266	47.5	14.1	0.51	0.23	0.61	1.12	0.84	
10	Anglesea Surf Club	275	47.0	7.1	0.53	0.22	0.31	0.84	0.53	
11	Waste Treatment Plant	322	65.5	7.4	0.61	0.31	0.32	0.93	0.63	
12	Anglesea Caravan Park	299	49.4	7.6	0.57	0.24	0.33	0.90	0.57	
13	Fraser Avenue	214	32.0	17.2	0.41	0.15	0.75	1.16	0.90	
14	Pt Road Knight Carpark	218	41.2	6.8	0.42	0.20	0.30	0.72	0.50	

Notes:

Composite Acute HI is based on the Acute HQ of SO₂ 1-hour and PM₁₀ 24-hour.
 24hr Acute HI is based on the Acute HQ of SO₂ 24-hour and PM₁₀ 24-hour.

3. Concentrations expressed at 25°C and 101.325 kPa.

Table 20: Summary of Predicted Concentrations at Fraser Avenue ¹						
	Averaging time	Concentration (µg/m ³)	HQ			
99.9th Percentile 1-Hour Sulphur Dioxide Concentration predicted on 5 July 2010						
Sulphur dioxide	214	0.41				
PM ₁₀	24-hour	12.5	0.27			
PM _{2.5}	24-hour	3.9	0.17			
			-			
99.5th Percentile 24-Hour Average PN 2011	I ₁₀ and PM _{2.5} Concent	trations both predicted on 10	April			
Sulphur dioxide (Maximum on 10 April 2011	1-hour	0	0.00			
PM ₁₀	24-hour	36.1	0.78			
PM _{2.5}	24-hour	12.6	0.55			
Notes 1 Background concentrations not included			•			

6.2.3 Chronic Effects

The chronic HIs including the background concentrations are presented in Table 21 and Figure 36.

Table 21: Calculated Chronic Hazard Indices							
Na	Decentor	Hazard	Quotient	Obressie III			
NO.	Receptor	SO ₂	PM _{2.5}	Chronic Hi			
1	CFA Hut	0.07	0.69	0.76			
2	Bald Hills Road	0.01	0.71	0.72			
3	Water Basin	0.01	0.77	0.78			
4	Forest Road	0.01	0.71	0.72			
5	Scout Camp	0.01	0.76	0.77			
6	Primary School	0.05	0.70	0.75			
7	Camp Road	0.04	0.71	0.75			
8	Community Centre	0.03	0.70	0.73			
9	Camp Wilkin	0.08	0.69	0.77			
10	Anglesea Surf Club	0.02	0.69	0.71			
11	Waste Treatment Plant	0.02	0.73	0.75			
12	Anglesea Caravan Park	0.03	0.71	0.74			
13	Fraser Avenue	0.15	0.68	0.83			
14	Pt Road Knight Carpark	0.01	0.69	0.70			

Figure 36 indicates that the maximum chronic HIs are predicted to occur in the immediate vicinity of the coal mine and are associated with the emissions of $PM_{2.5}$ from the mine. The chronic HIs are dominated by the contribution of $PM_{2.5}$ which is primarily associated with the background concentration assumed in the study. The chronic HIs are less than one indicating no cause for concern in terms of potential chronic health risk at all of the nominated receptors.

6.2.4 Irritancy

For the purposes of this screening assessment irritancy refers to a direct physiological response arising from short-term exposure to a compound that may result in mild, transient adverse health effects that are reversible upon cessation of exposure. The health reference values used in the health risk assessment are generally derived from information on the most sensitive toxicological endpoint and in some cases this end point is irritancy. In cases where the most sensitive, critical end point is not irritancy, the reference value derived is also protective of irritancy. However, the NEPC (2011) concluded that many compounds do not have a recognised threshold concentration below which no adverse health effects will be observed. Where there is no threshold concentration, adverse impacts, including irritancy, may occur in a small percentage of the population at concentrations below the ambient air quality criteria.

The HQ for the individual acute effects of SO_2 , PM_{10} and $PM_{2.5}$ are all less than one (with the exception of PM_{10} at Fraser Avenue that is marginally over one) and the peak short-term concentrations for SO_2 occur at different times to those for PM_{10} and $PM_{2.5}$. Therefore the risk that the emissions from the power station and coal mine will cause irritation in the wider population is considered to be low.

6.3 Uncertainties Associated With Screening HHRA

The risk assessment process relies on a set of assumptions and estimates with varying degrees of uncertainty. The major sources of uncertainty associated with the risk assessment are associated with:

- 1. Predicted ground level concentrations which can be affected a number of factors including:
 - a. Variability of the atmospheric dispersion conditions.
 - b. Assumptions in the models used to estimate key inputs (e.g. emission estimates).
 - c. Background concentrations.
- 2. Ambient air quality guidelines used within the assessment.
- 3. Exposure uncertainty.

Each of these aspects is discussed in the following sections.

6.3.1 Predicted Ground Level Concentrations

As is the case with any air dispersion modelling assessment, there is uncertainty associated with the predicted ground level concentrations. The key areas of uncertainty associated with the predicted ground level concentrations used for this assessment are outlined in this section.

TAPM predicted meteorology was used in both the TAPM and CALPUFF air dispersion models. The predicted wind speed and direction has been compared to the measured meteorology for the Anglesea Power Station monitoring site and shown to agree well statistically. However, TAPM was shown to under-predict the frequency of light winds that could result in an under-prediction of the maximum ground level concentrations of particulate from the coal mine. The reliability of the predicted meteorological data across the model domain cannot be verified.

The identification and quantification of atmospheric emissions from the power station include the following uncertainties:

- Measurement and analytical uncertainty associated with the stack sampling methods used at the power station. Alcoa have used NATA accredited testing laboratories to undertake the stack sampling program at the power station. However, uncertainty associated with test method interferences, repeatability and reproducibility tests typically range from ±20% to ±30% (could be higher for some compounds).
- Uncertainty arising from variability in discharge characteristics (e.g. emission volume and temperature) and emissions rates (e.g. process variability at time periods shorter than one hour, and the accuracy of continuous emissions monitoring systems).
- Uncertainty arising from the sample size (i.e. number of stack samples) and averaging periods used for compounds not measured on a continuous basis.

The identification and quantification of atmospheric emissions from the coal mine include the following uncertainties:

- The emission factors/equations used to estimate the emission rates are based on research associated with emissions from a range of different operations around the world. Therefore, emissions associated with a particular mine may be different to those calculated from the emission estimation techniques.
- Variability in the actual particulate size distributions compared to those included in the model.
- Variability in the operational areas at the coal mine will affect the actual source of the emissions at any point in time.
- The effectiveness of the management practices (e.g. use of water carts, maintenance of infrastructure) can impact upon the magnitude of the emissions at any point in time.

Background concentrations (i.e. not Anglesea power station and coal mine related) were adopted for the assessment in accordance with the SEPP (AQM) (refer to Section 5). As the power station represents the primary regional source of SO_2 emissions, the background concentrations of SO_2 across the modelling domain are expected to be small and this is supported by the long term ambient SO_2 monitoring database. Limited ambient monitoring data are currently available to characterise background PM₁₀ and PM_{2.5} concentrations in the Anglesea area. There are many sources of particulate emissions that occur in the Anglesea area including both natural (e.g. wind-blown dust, sea salt during on-shore air flows, bushfires) and anthropogenic sources (e.g. clearing, fires, vehicles)), and therefore the background PM₁₀ and PM_{2.5} concentrations applied in this assessment are considered to be a source of uncertainty.

In completing the air dispersion modelling study, conservative assumptions were applied wherever practical. The available ambient monitoring data indicate that over the five year period between 2008 and 2012, the ambient SO₂ concentrations have marginally exceeded the NEPM 1-hour standard for one hour at three monitoring sites. However in general, the ambient SO₂ concentrations monitored at these sites were well below the NEPM 1-hour standard (e.g. the maximum 99.9th percentile concentration at any monitoring site was 386 μ g/m³). The available PM₁₀ and PM_{2.5} monitoring data indicate compliance with the NEPM standard.

Validation of the model performance showed that the air dispersion models performed well when statistics of the predicted and measured concentrations were compared.

6.3.2 Ambient Air Quality Guidelines

Section 6.1 presented a brief summary of the potential effects associated with exposure to SO_2 , PM_{10} and $PM_{2.5}$ in the ambient environment and the NEPM ambient air quality standards applied in this assessment. The NEPM standards were established in 1998 (with a review to add $PM_{2.5}$ in 2003) and were based on the information available at that time. The setting of ambient air quality standards is also subject to policy judgments (e.g. the absolute level of protection provided by the standards) of the regulatory organisations and by legislative influences. The NEPM standards are therefore considered to be appropriate for use in this screening HHRA as recommended by enHealth (2012) which states that "the hazard identification component may simply identify the relevant national or international guideline values for each chemical that may be present".

The NEPC commenced a review of the Ambient Air NEPM in 2007 and in 2011 reported (NEPC, 2011) that the SO₂ health evidence indicated that health effects are observed at current levels of SO₂ in Australian cities which are well below the NEPM standard. The effects are greatest in people with asthma. It also recommended that compliance standards be introduced for $PM_{2.5}$ and that an annual average standard be introduced for PM_{10} . Any changes to the NEPM ambient air quality standards may affect the outcome of the screening HHRA.

The NEPC (2011) found that many compounds do not have a recognised threshold for adverse health impacts and therefore there is no concentration below which all of the population will be protected. It therefore includes a recommendation to incorporate exposure reduction targets for priority pollutants within the NEPM. Alcoa is committed to reducing population exposure to the emissions from its operations. The AQCS that was implemented in 2009 has been designed to reduce the magnitude and duration of elevated SO_2 concentrations within the town of Anglesea. Alcoa also has management measures in place to reduce the emissions of fugitive dust from its coal mining operations.

6.3.3 Exposure Uncertainty

The screening HHRA has only considered exposure via the inhalation pathway. There is therefore a potential that total exposure to specific compounds, particularly for PM_{10} and $PM_{2.5}$ may be underestimated. Ingestion of particulate matter through mechanism such as crops (e.g. vegetable gardens) and water (e.g. suspended or dissolved particulates from rainwater tanks) may result in increased exposure. This is considered to represent a small risk beyond the immediate vicinity of the coal mine.

The screening HHRA has also assumed that an individual is at the same location for the exposure times used in the assessment (i.e. 1-hour, 24-hour and annual) which is considered to be unlikely particularly for times of more than 1-hour.

The calculated HIs have also assumed that the SO_2 and particulate matter (PM_{10} and $PM_{2.5}$) concentrations occur at the same time. An assessment of the predicted percentile concentrations indicates that this does not occur due to the different source characteristics (i.e. stack source for SO_2 and fugitive low level sources for the majority of the particulate emissions).

6.4 Screening HHRA Conclusions

ENVIRON has conducted a screening level HHRA of the potential health risks arising from atmospheric emissions from the Anglesea Power Station and coal mine. The air dispersion modelling study considered 39 compounds that may be emitted from Alcoa's operations. SO_2 , PM_{10} and $PM_{2.5}$ were predicted to result in ground level concentrations that were greater than the SEPP (AQM) design criteria. Therefore only SO_2 , PM_{10} and $PM_{2.5}$ were carried through to the screening HHRA as required by the EPAV.

Quantitative health risk indicators were calculated for exposure via the inhalation pathway to the emissions of SO₂, PM_{10} and $PM_{2.5}$. The acute and chronic HIs were calculated across the model domain and for key receptors located in the vicinity of the power station and coal mine.

Based upon the results of the screening HHRA it can be concluded that:

- The emissions from the power station and coal mine when considered in combination with the background concentrations are predicted to result in a composite acute HI of greater than one at all but two of the nominated receptor locations.
- The 24-hour acute HI was less than one at all locations other than Camp Wilkin and Fraser Avenue.
- An analysis of the predicted concentrations associated with the maximum composite HIs indicated that the 99.5th percentile 24-hour PM₁₀ concentrations occurred at different times to when the 99.9th percentile 1-hour SO₂ concentration occurred.
- For all receptors other than Fraser Avenue, the individual PM₁₀ and SO₂ acute HQs were less than one indicating that the predicted PM₁₀ and SO₂ percentile concentrations considered in the screening HHRA were below the relevant NEPM ambient standards.
- For Fraser Avenue the acute HQ was predicted to be in excess of one for PM₁₀. Of this, Alcoa's operations were predicted to have contributed approximately 70% of the 24-hour concentration. The NEPM goal for PM₁₀ is to have no more than five days where the NEPM standard is exceeded. Further analysis of the modelling data indicates that the sixth highest 24-hour average concentrations predicted at Fraser Avenue are well below the NEPM standard for each of the five years modelled. While no exceedances of the NEPM standard have been recorded at the ambient particulate monitoring sites, the air dispersion modelling indicates the potential for this to occur albeit infrequently.

- The acute HIs marginally greater than one are not considered to present cause for concern in terms of possible health risks due to the inherent conservatism embedded in the exposure assessment applied to screening health risk assessment.
- The emissions from the power station and coal mine are predicted to result in a chronic HI and HQ of less than one at all of the nominated receptor locations.
- The potential for emissions from the power station and the coal mine to cause chronic health effects is therefore considered to be low.

The NEPM ambient air quality standards represent the currently accepted standards in Australia, and have therefore been used in this screening HHRA. Any changes to the NEPM ambient air quality standards may affect the outcome of the screening HHRA.

As with any risk evaluation, there are areas of uncertainty in this assessment. To ensure that potential risks are not underestimated, uniformly conservative assumptions have been used to characterise exposure and toxicity.

Alcoa has implemented an AQCS to manage the impacts of SO_2 on the Anglesea township which has reduced the occurrence of 1-hour average concentrations of SO_2 that exceed the NEPM 1-hour standard in the community. Only one exceedance of the NEPM standard has been recorded in the last four years.

Further, Alcoa commenced ambient PM_{10} and $PM_{2.5}$ monitoring in July 2012 to assess the potential impacts associated with fugitive particulate emissions from its operations. The monitoring results from July to December 2012 indicate that the NEPM standards were being met at all three monitoring locations during this period.

ENVIRON recommends that management/mitigation measures are regularly reviewed to ensure control of the acute (short-term exposure) risk posed by SO_2 from the power station and dust emissions from the coal mine.

7 References

- ASTM D6589 05 (2010) e1 Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance. DOI: 10.1520/D6589-05R10E01
- Australian Government (2003). National Environmental Protection (Ambient Air Quality) Measure 2003. Gazette No S190, 2 June 2003.
- Chang, J.C., Hanna, S.R., (2004). *Air quality model performance evaluation*. Meteorology and Atmospheric Physics. <u>87</u>, 167-196.
- Cox, W.M., Tikvart, J.A. (1990). A Statistical Procedure for Determining the Best Performing Air Quality Simulation Model. Atmospheric Environment <u>24A(9)</u>: 2387-2395
- enHealth (2012) Environmental Health Risk Assessment Guidelines for Assessing Human Health Risks from Environmental Hazards. Commonwealth of Australia 2012.
- EPAV (2001a). *State Environment Protection Policy (SEPP) (Air Quality Management)*. Victorian Environment Protection Authority .
- EPAV (2001b). *State Environment Protection Policy (SEPP) (Ambient Air Quality)*. Victorian Environment Protection Authority.
- European Commission (2006) Reference Document on Best Available Techniques on Emissions from Storage. Integrated Pollution Prevention and Control, July 2006
- Hanna, S.R. (1988). Air Quality Model Evaluation and Uncertainty, JAPCA, 38: 406.
- Hurley P., (2000). Verification of TAPM meteorological predictions in the Melbourne region for a winter and summer month, Aust. Met. Mag., Vol 49, Pg 97-107.
- Larsen, J.C. & Larsen, P.B. (1998) Chemical carcinogens. In: Hester, R.E. & Harrison, R.M., ed. Air pollution and health. Cambridge, Royal Society of Chemistry, pp. 35–36.
- NEPC (1998) National Environment Protection Measure for Ambient Air Quality. 26 June 1998, National Environment Protection Council Service Corporation, Adelaide, South Australia.
- NEPC (2004) National Environment Protection (Air Toxics) Measure . 3 December 2004, National Environment Protection Council Service Corporation, Adelaide, South Australia.
- NEPC (2007). Review of the National Environment Protection (Ambient Air Quality) Measure Review. Discussion Paper. Prepared for the National Environment Protection Council, June 2007.
- NEPC (2011). National Environment Protection (Ambient Air Quality) Measure Review. Review Report. Prepared for the National Environment Protection Council, May 2011.
- NPI (2012). National Pollutant Inventory Emission Estimation Technique Manual for Mining Version 3.1 January 2012. Commonwealth of Australia 2012.
- National Research Council (2004). Research priorities for airborne particulate matter. IV. Continuing research progress. Washington, DC, National Academies Press, 2004.

- Pielke, R.A. (1984). *Mesoscale Meteorological Modeling*, 612 pp., Academic Press, New York.
- Risk Assessment Taskforce (2000) Health Effects of Criteria Pollutants. Prepared as part of the National Environment Protection (Ambient Air Quality) Measure Review. Report of the Risk Assessment Taskforce, October 2000.
- Turner D.B. (1994). Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modelling, Second Edition.
- USEPA (1985). Guideline for the Determination of Good Engineering Practice Stack Height. US EPA.
- USEPA (1987). Proposed revisions to the nation's ambient air quality standards for particulate matter. Federal Register, 1987,49:10408–10435.
- USEPA (1990). National Ambient Air Quality Standards (NAAQS) Primary Standards. US EPA.
- USEPA (1991). Procedures for Preparing Emissions Projections. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina. EPA 450/4-91-019.
- USEPA (1992). Protocol for determining the best performing model.. USEPA, EPA-454/R-92-025, Research Triangle Park, NC.
- USEPA (1997). National ambient air quality standards for particulate matter, Part KK. Federal Register, 1997, 62:138.
- USEPA (2001). "Appendix W to Part 51 Guideline on Air Quality Models." USEPA 40 CFR
- USEPA. (2004a). "Compilation of air Pollutant Emission factors, AP-42, Fifth Edition, Volume 1: Stationary Point and Area Sources. Section 13.2.4. Aggregate Handling and Storage Piles. 1/95".
- USEPA. (2004b). "Compilation of air Pollutant Emission factors, AP-42, Fifth Edition, Volume 1: Stationary Point and Area Sources. Section 13.2.5. Industrial Wind Erosion. 1/95".
- USEPA (2006a). AP42 Emission Factors, Section 13.2.5 Industrial Wind Erosion. Final Section, November 2006.
- USEPA (2006b). "Compilation of air Pollutant Emission factors, AP-42, Fifth Edition, Volume 1: Stationary Point and Area Sources. Section 13.2.2. Unpaved Roads. 11/06".
- USEPA (2008). Integrated Science Assessment for Sulfur Oxides Health Criteria. Second External Review Draft, US EPA, EPA/600/R-08/047, May 2008.
- USEPA (2009). Risk and Exposure Assessment to Support the Review of the SO₂ Primary National Ambient Air Quality Standards: Second Draft, US EPA, EPA-452/P-09-003 March 2009

- Van den Berg, M., L.S. Birnbaum, M. Denison *et al.* (2006). The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. <u>93(2)</u>:223-241.
- WHO (2003). Health Risks of Persistent Organic Pollutants from Long-Range Transboundary Air Pollution. Joint Who/Convention Task Force on the Health Aspects of Air Pollution. WHO Regional Office for Europe, E78963.
- WHO (2006). Air Quality Guidelines Global Update 2005. WHO Regional Office for Europe, ISBN 92 890 2192 6

8 Limitations Of Study

We have prepared this report for the use of Alcoa's Anglesea operations in accordance with generally accepted consulting practice. No other warranty, expressed or implied, is made as to the professional advice included in this report. This report has not been prepared for the use by parties other than the client, the owner and their respective consulting advisors. It may not contain sufficient information for purposes of other parties or for other uses.

Figure 13: Location of the Dust Monitoring Stations (Source Image: Google Earth)	Client: Alcoa Anglesea	📢 ENVIRON	
	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted Ground Level - Composite Acute HI (SO ₂ and PM_{10})			
	Background	Predicted HI	Background	
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	
Max Composite Acute HI in Modelled Domain	0.34	38.2	38.5	
1	0.34	0.86	1.20	
2	0.34	0.68	1.02	
3	0.34	0.94	1.28	
4	0.34	0.60	0.94	
5	0.34	0.79	1.13	
6	0.34	0.76	1.10	
7	0.34	0.67	1.01	
8	0.34	0.71	1.05	
9	0.34	1.00	1.34	
10	0.34	0.66	1.00	
11	0.34	0.77	1.11	
12	0.34	0.72	1.06	
13	0.34	1.19	1.53	
14	0.34	0.53	0.87	

Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted Ground Level - 24-Hour Acute HI (SO ₂ and PM_{10})			
	Background	ound Predicted HI Background		
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	
Max Composite Acute HI in Modelled Domain	0.34	37.8	38.1	
1	0.34	0.57	0.91	
2	0.34	0.39	0.73	
3	0.34	0.62	0.96	
4	0.34	0.31	0.65	
5	0.34	0.56	0.90	
6	0.34	0.49	0.83	
7	0.34	0.48	0.82	
8	0.34	0.41	0.75	
9	0.34	0.72	1.06	
10	0.34	0.36	0.70	
11	0.34	0.47	0.81	
12	0.34	0.39	0.73	
13	0.34	0.93	1.27	
14	0.34	0.31	0.65	

Figure 33: 24-Hour Acute HI (SO2 and PM10) (Source Base Map: Google Maps) Client: Alcoa Anglesea Project: Anglesea HHRA Drawing Ref: AL Date: 11/7/13

	Predicted Ground Level - Composite Acute HI (SO ₂ and PM _{2.5})			
	Background	Predicted HI	Background	
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	
Max Composite Acute HI in Modelled Domain	0.20	24.0	24.2	
1	0.20	0.70	0.90	
2	0.20	0.65	0.85	
3	0.20	0.91	1.11	
4	0.20	0.57	0.77	
5	0.20	0.75	0.95	
6	0.20	0.70	0.90	
7	0.20	0.63	0.83	
8	0.20	0.65	0.85	
9	0.20	0.90	1.10	
10	0.20	0.62	0.82	
11	0.20	0.72	0.92	
12	0.20	0.69	0.89	
13	0.20	0.93	1.13	
14	0.20	0.50	0.70	

Figure 34: Composite Acute HI (SO₂ and PM_{2.5})

(Source Base Map: Google Maps)					
Client: Alcoa Anglesea	📢 ENV	IRON			
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13			

Date: 11/7/13

Background

+ Predicted

Only)

23.8

0.61

0.56

0.79

0.48

0.72

0.63

0.64

0.55

0.82

0.52

0.62

0.56

0.87

0.48

Appendix A EPA Correspondence

30 October 2007

Neil Salisbury Manager Environ Australia Suite 5, 651 Victoria St ABBOTSFORD VIC 3067

Our Ref: 32313

Dear Neil

PORTLAND ALUMINIUM QHRA

Thank you for your letter regarding additional information on the air dispersion modelling and Quantitative Health Risk Assessment for Portland Aluminium.

EPA has the following comments in response to the questions you have raised.

- If there is evidence that a substance will be present or will be generated through the process then it should be included in the inventory. EPA agrees with the method of using half the limit of detection, but does not support the approach of converting the non-detects to zero if it is expected that a substance will be present.
- The cumulative carcinogenic risk should not exceed 1 in 100,000. This includes the contribution from background levels, and should be considered as the upper bound of risk, not the acceptable risk target. Emission controls should be aimed at reducing the risk to 1 in a million. The contribution from the facility alone (i.e. without background) should not exceed 1 in a million.
- The State environment protection policy (Air Quality Management) [SEPP (AQM)] and the State environment protection policy (Ambient Air Quality) [SEPP (AAQ)] objectives must be used where available. If other standards/guidelines are to be used they must be justified, and as far as possible guidelines from only one agency should be used.

The intervention levels in the SEPP (AQM) for air toxics were adopted from the Texas Centre for Environmental Quality Effect Screening Levels (ESL). To be consistent with SEPP (AQM) it would be appropriate to use these values. The Californian EPA also has a set of Acute and Chronic Reference Exposure Levels (REL) from which the derivation is available on their website.

EPA recommends the following hierarchy for using the standards/guidleines

/ICTORIA

because this is our home

Cnr Little Malop & Fenwick Streets Geelong Vic 3220 Tel 03 5226 4825 Fax 03 5226 4632 ABN 85 899 617 894 DX 216073

Printed on recycled paper

- 1. SEPP (AQM)
- 2. Texas ESL
- Californian EPA REL
- The SEPP (AQM) requires background data to be included, unless it can be demonstrated that there are no other sources of the pollutant in the region. Background data must be included for all criteria pollutants.

EPA has data available on PM_{10} for Warrnambool. Please contact EPA for advice on other data that may be appropriate to your assessment.

- EPA agrees with the approach for comparing the predicted ground level concentrations against the SEPP (AQM). Only substances that do not meet the design criteria (including background) need to undergo a quantitative risk assessment.
- EPA agrees the approach for reviewing the sensitive receptors.
- Modelling should be conducted for the worst-case normal operations (e.g. maximum emissions), and should be done using the maximum hourly emissions rates.
- EPA agrees with the use for the Mt Gambier data for the preliminary evaluation of model predications.
- PM_{2.5} emissions should be modelled for all cases where particles (PM₁₀ and TSP) are being modelled.
- The time series plots should show background, contribution from the smelter and combine concentration separately on the graph so that the contribution from the smelter to the total concentrations can be clearly identified.

 In schedule A of SEPP (AQM), the design criteria for PAHs refer to PAH measured as benzo-a-pyrene.

For the intervention levels specified in Schedule B the definition of PAHs are all particles bound PAHs with a vapour pressure below that of Pyrene (at STP).

For the standard 16 PAHs measured the particle bound PAHs is considered the sum of the following compounds:

- benz(a)anthracene
- Chrysene
- benzo(b&k) fluoranthene,
- benzo(a)pyrene
 - benzo(e)pyrene
- perylene
- indeno (1,2,3-cd)pyrene
- dibenzo(a.h)anthrancene
- benzo(ghi)perylene.

If you have any queries please contact me on 5226 4825.

Yours sincerely

ERICA KUHLE SOUTH WEST REGION

RECEIVED THE WILL PAR

Appendix B Sampling Methods

Contractor Company Name: SGS

Analyte	Sampling Methodology/ SGS Method ID	Analytical Methodology/ SGS Method ID	Analysis Performed by/NATA Accreditation Number:	Analytical Limit of Detection	QC Method (Spiking/Ref. Std etc)
Carbon Monoxide	Online analyser / SGS Method VAMTR-PEMS	Non-dispersive infrared CO analyser	SGS (onsite)/ NATA Acc no: 14601	0.5ppm	On-use calibration with NATA certified gas standard
Oxides of Nitrogen	Online analyser / SGS Method VAMTR-PEMS	Chemiluminescence NOx analyser/ USEPA Method 7E	SGS (onsite)/ NATA Acc no: 14601	0.5ppm	On-use calibration with NATA certified gas standard
Sulphur Dioxide	Online analyser / SGS Method VAMTR-PEMS	Fluorescence SO2 analyser.	SGS (onsite)/ NATA Acc no: 14601	-	On-use calibration with NATA certified gas standard
Polycyclic Aromatic Hydrocarbons	Isokinetic sampling into a train consisting of a filter, resin trap and impinger train/ California Air Resources Board Method 429,	Gas chromatography with mass selective detection (GCMS)/ CARB 429	SGS Belgium (reported by SGS Australia)/ NATA Acc no: 2562	0.25µg	Field spike (pre- sampling) and laboratory(post- sampling) spike
Chloride as hydrogen chloride	Impinger train sampling USEPA Method No 26A.	USEPA Method No 26A. analysis by ION chromatography.	SGS Sydney, report no.51894	-	-
Total Fluorides	Isokinetic sampling using method MEA-238	Soluble fluoride fraction analysed using fluoride specific electrode	SGS Gippsland (reported by SGS Australia)	-	Field spike (pre- sampling) and laboratory(post- sampling) spike
Volatile Organic Compounds	Single-point sampling onto a activated charcoal tube/ Vic EPA Method 4230.	Gas chromatography with mass selective detection (GCMS)/ Vic EPA Method 440.1	SGS Coburg (reported by SGS Australia)/ NATA Acc no: 2562	10µg	Duplicate samples

Analyte	Sampling Methodology/ SGS Method ID	Analytical Methodology/ SGS Method ID	Analysis Performed by/NATA Accreditation Number:	Analytical Limit of Detection	QC Method (Spiking/Ref. Std etc)
Dioxins and furans	Isokinetic sampling into a train consisting of a filter, resin trap and impinger train/ USEPA Method 23	Gas chromatography with mass selective detection (GCMS)/ CARB 429	SGS Belgium (reported by SGS Australia)/ NATA Acc no: 2562	0.25 – 130 µg (depending on dioxin/furan species)	Field spike (pre- sampling) and laboratory (post- sampling) spike
Carbon Dioxide	Online Analyser / SGS method VAMTR-PEMS	Non-dispersive infrared CO analyser	SGS (onsite)/ NATA Acc no: 14601	0.5ppm	On-use calibration with NATA certified gas standard
Total (Gaseous and Particulate) Metals and Metallic compounds	Isokinetic sampling into a train consisting of a filter and impingers/ USEPA Method 29	Inductively coupled plasma (ICP) or atomic absorption (AA) spectroscopy/ USEPA Method 29	SGS Australia/ NATA Acc no: 2562	0.1 – 10 μg (depending on metal species)	Matrix spike Duplicate samples
Particulate Matter	Isokinetic sampling into an in-line filter holder, (in-stack)/ AS 4323.2 1995	Gravimetric analysis/ AS 4323.2 1995.	SGS (laboratory)/ NATA Acc no: 14601	0.5mg	Acetone blank
Particulate Matter 10	Sampling using Malvern Mastersizer M20 laser particle size analyser	Gravimetric analysis/ USEPA Method 201A	Herman Research Laboratories	-	-
Moisture Content	Gravimetry, MEA-105/ SGS method MEA-107	USEPA method 23,29, 26A	NA	NA	NA
Flow rate and Velocity	MEA-100, using a pitot tube and differential manometer.	NA	SGS (onsite)/ NATA Acc no:	NA	NA
Sampling plane criteria	AS 4323.1 -1995	NA	NA	NA	NA

DRAFT

Appendix C TAPM Input File

|------| | THE AIR POLLUTION MODEL (TAPM V4.0.4). | | Copyright (C) CSIRO Australia. | | All Rights Reserved. | |------|

RUN INFORMATION:

NUMBER OF GRIDS= 4 GRID CENTRE (longitude, latitude) = (144.1750 , -38.39167) GRID CENTRE (cx,cy)=(253764, 5747349) (m) GRID DIMENSIONS (nx,ny,nz)=(42, 42, 25) NUMBER OF VERTICAL LEVELS OUTPUT = 17 DATES (START, END)=(20091229, 20101231) DATE FROM WHICH OUTPUT BEGINS = 20100101 LOCAL HOUR IS GMT+ 9.600000 TIMESTEP SCALING FACTOR = 1.000000 VARY SYNOPTIC WITH 3-D SPACE AND TIME V4 LAND SURFACE SCHEME EXCLUDE NON-HYDROSTATIC EFFECTS INCLUDE PROGNOSTIC RAIN EQUATION EXCLUDE PROGNOSTIC SNOW EQUATION TKE-EPS TURBULENCE (PROGNOSTIC TKE + EPS, EDMF) POLLUTION : 1 TRACER (TR1) INCLUDE POLLUTANT VARIANCE EQUATION INCLUDE 3-D POLLUTION OUTPUT (*.C3D) POLLUTANT GRID DIMENSIONS (nxf,nyf)=(83, 83) TR1 POLLUTANT SPECIES : GENERIC TR1 BACKGROUND = 0.0000000E+00 (ug/m3)TR1 DECAY RATE = 0.0000000E+00 (per second)

START GRID 1 angle01 GRID SPACING (delx,dely)=(20000, 20000)(m) POLLUTANT GRID SPACING (delxf,delyf)=(10000, 10000)(m) NO MET. DATA ASSIMILATION FILE AVAILABLE NO CONCENTRATION BACKGROUND FILE AVAILABLE NO BUILDING FILE AVAILABLE NUMBER OF pse SOURCES= 1 NO Ise EMISSION FILE AVAILABLE NO ase EMISSION FILE AVAILABLE NO gse EMISSION FILE AVAILABLE NO bse EMISSION FILE AVAILABLE NO whe EMISSION FILE AVAILABLE NO vpx EMISSION FILE AVAILABLE NO vdx EMISSION FILE AVAILABLE NO vIx EMISSION FILE AVAILABLE NO vpv EMISSION FILE AVAILABLE

INITIALISE

LARGE TIMESTEP = 300.0000 METEOROLOGICAL ADVECTION TIMESTEP = 150.0000 (s) POLLUTION ADVECTION TIMESTEP = 300.0000 (s) pse KEY : is = Source Number ls = Source Switch (-1=Off,0=EGM,1=EGM+LPM) xs,ys = Source Position (m) hs = Source Position (m) hs = Source Height (m) rs = Source Radius (m) es = Buoyancy Enhancement Factor fs_no = Fraction of NOX Emitted as NO fs_fpm= Fraction of APM Emitted as FPM INIT_pse is, ls, xs, ys, hs, rs, es, fs_no, fs_fpm 1, 1, 253764., 5747349., 107.00, 1.94, 1.00, 1.00, 0.50,

LAGRANGIAN (LPM) MODE IS OFF FOR THIS GRID
Appendix D Haul Road Emission Rates

Haul Road Generated Dust

Average Wind Speed	4.2 m/s
Moisture Content	44.8 %

Total vehicle kilometres travelled (VKTs) for haulpacks were based on each truck driving over a haul road to either a waste dump or the primary crusher

PM10 Wheel Generated Dust from Unpaved Roads

EK= W*1.023//3/0.45 kg/VKT VKT (which kilometres travelled) 44.8 % Moisture Content of Coal 5 % V = Vehicle Gross mass in tonnes 70 tonnes Average speed light vehicles 30 km/h Average speed light vehicles 30 km/h Average speed haul trucks 30 km/h PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total no. of trips of 60 ton Haul Truck torusher and back (5706 hours) 16651 trips 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck torusher dump (6536 hours) 12651 trips 45.62 Trips per day * 365 days Kilometers travelled from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 13.2 km (Per Year) Emissions from coal pit to crusher (PM10) - Haul Truck (5636 Hours) 5.5 g/s (Per Year) Emissions from coal pit to crusher (PM10) - Haul Truck (5636 Hours) 5.5 g/s (75% Dust Control - Level 2 Watering) Movement on haul coal (75% Control - application of level 2 watering) 15.4 g/s (75% Dust Control - Level 2 Watering)		0.4536/1.6093*1.5*(s/12)^	`0.9*((
VKT (vehicle kilometres travelled) 44.8 % Moisture Content of Coal 5 % SSIIt Content of K(%) 5 % W= Vehicle Gross mass in tonnes 70 tonnes Average speed light vehicles 30 km/h Average speed haul trucks 15 km/h PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total no. of trips of 60 ton Haul Truck to Crusher and back (5706 hours) 16651 trips 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck to crusher and back (5706 hours) 16651 trips 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck to crusher and back (5706 hours) 16651 trips 45.62 Trips per day * 365 days - by three overburden hau Kilometers travelled from coal pit to crusher 3.2 km 140.4 Trips per day * 365 days - by three overburden hau Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s 6.5 g/s Movement on haul road (75% Control) - application of level 2 watering 5.5 g/s 75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.64 g/s (75% Dust Control - Level 2 Watering)	EK=	W*1.1023)/3)^0.45	kg/VKT	
Moisture Content of Coal 44.8 % S=Silt Content (%) 5 % W Vehicle Gross mass in tonnes 70 tonnes (Assuming haul truck leaves full and arrives empty) Average speed light vehicles 30 km/h 15 km/h Average speed light vehicles 30 km/h 15 km/h PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total vehicle kilometres travelled over hours 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total no. of trips of 60 ton Haul Truck to cusher and back (5706 hours) 16651 trips 45.62 Trips per day * 365 days - by three overburden hau Kilometers travelled from coal pit to crusher 3.2 km 3.2 km 4.6.4 km/h Sesins from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s 6.5 g/s Per Year) Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s 6.5 g/s Total vehicles Movement on haul road (75% Control) - application of level 2 watering 6.5 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	VKT (vehicle kilometres travelled)			
S-Silt Content (%) 5 % W= Vehicle Gross mass in tonnes 70 tonnes Average speed light vehicles 30 km/h Average speed light vehicles 30 km/h Average speed haul trucks 15 km/h PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT Total vehicle kilometers travelled over hours (VKT= vehicle kilometers travelled) Total no. of trips of 60 ton Haul Truck to Crusher and back (5706 hours) 16651 trips Total no. of trips of 60 ton Haul Truck to waste dump (6536 hours) 51246 trips Kilometers travelled from coal pit to crusher 3.2 km Kilometers travelled from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours) 2.2 g/s Movement on haul road (75% Control) - application of level 2 watering (75% Dust Control - Level 2 Watering) Emissions from coal pit to crusher (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Moisture Content of Coal		44.8 %	
W= Vehicle Gross mass in tonnes 70 tonnes (Assuming haul truck leaves full and arrives empty) Average speed light vehicles 30 km/h 15 km/h Average speed haul trucks 0.8 kg/VKT (VKT= vehicle kilometres travelled) PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total vehicle kilometers travelled over hours 16651 trips 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck to Crusher and back (5706 hours) 16651 trips 140.4 Trips per day * 365 days - by three overburden hau Kilometers travelled from coal pit to crusher 3.2 km 140.4 Trips per day * 365 days - by three overburden hau Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s 6.5 g/s Movement on haul coal (75% Control) - application of level 2 watering 2.2 g/s 6.5 g/s Emissions from coal pit to crusher (PM10) - Haul Truck 5.5 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to crusher (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	S=Silt Content (%)		5 %	
Average speed light vehicles 30 km/h Average speed haul trucks 30 km/h PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total vehicle kilometers travelled over hours 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total no. of trips of 60 ton Haul Truck to Crusher and back (5706 hours) 16651 trips 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck to waste dump (6536 hours) 51246 trips 140.4 Trips per day * 365 days - by three overburden hau Kilometers travelled from coal pit to crusher 3.2 km 3.6 km Per Year) Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s 6.5 g/s Per Year) Movement on haul road (75% Control) - application of level 2 watering 75% Dust Control - Level 2 Watering) (75% Dust Control - Level 2 Watering) Emissions from coal pit to crusher (PM10) - Haul Truck 0.54 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to crusher (PM10) - Haul Truck 15.4 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to crusher (PM10) - Haul Truck 15.4 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 15.4 g/s (75% Dust Control - Level	W= Vehicle Gross mass in tonnes		70 tonnes	(Assuming haul truck leaves full and arrives empty)
Average speed haul trucks 15 km/h PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total vehicle kilometers travelled over hours 16651 trips 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck to Crusher and back (\$706 hours) 16651 trips 40.4 Trips per day * 365 days - by three overburden hau Kilometers travelled from coal pit to crusher 3.2 km 3.2 km Kilometers travelled from coal pit to crusher (PM10) - Haul Truck (\$706 Hours) 2.2 g/s (Per Year) Emissions from coal pit to crusher (PM10) - Haul Truck (\$536 Hours) 2.2 g/s (Per Year) Movement on haul road (75% Control) - application of level 2 watering 5124 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to crusher (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Average speed light vehicles		30 km/h	
PM10 - Wheel generated Dust from unpaved roads 0.8 kg/VKT (VKT= vehicle kilometres travelled) Total vehicle kilometers travelled over hours 45.62 Trips per day * 365 days 140.4 Trips per day * 365 days - by three overburden hour Total no. of trips of 60 ton Haul Truck to waste dump (6536 hours) 51246 trips 45.62 Trips per day * 365 days - by three overburden hour Kilometers travelled from coal pit to crusher 3.2 km 140.4 Trips per day * 365 days - by three overburden hour Kilometers travelled from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s 6.5 g/s Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s 6.5 g/s Movement on haul road (75% Control) - application of level 2 watering 6.5 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Average speed haul trucks		15 km/h	
Total vehicle kilometers travelled over hours 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck to Crusher and back (5706 hours) 11651 trips 45.62 Trips per day * 365 days Total no. of trips of 60 ton Haul Truck to waste dump (6536 hours) 51246 trips 140.4 Trips per day * 365 days - by three overburden hau Kilometers travelled from coal pit to crusher 3.2 km 3.6 km (Per Year) Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s (Per Year) Movement on haul road (75% Control) - application of level 2 watering 6.5 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	PM10 - Wheel generated Dust from unpaved roads		0.8 kg/VKT	(VKT= vehicle kilometres travelled)
Total no. of trips of 60 ton Haul Truck to Crusher and back (5706 hours)16651 trips45.62 Trips per day * 365 daysTotal no. of trips of 60 ton Haul Truck to waste dump (6536 hours)51246 trips140.4 Trips per day * 365 days - by three overburden hauKilometers travelled from coal pit to crusher3.2 kmKilometers travelled from coal pit to waste dump3.6 kmEmissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours)2.2 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours)2.2 g/sMovement on haul road (75% Control) - application of level 2 watering0.54 g/sEmissions from coal pit to crusher (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck1.62 g/sEmissions from coal pit to waste dump (PM10) - Haul Truck1.62 g/s	Total vehicle kilometers travelled over hours			
Total no. of trips of 60 ton Haul Truck to waste dump (6536 hours) 51246 trips 140.4 Trips per day * 365 days - by three overburden hau Kilometers travelled from coal pit to crusher 3.2 km Kilometers travelled from coal pit to waste dump 3.6 km Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours) 6.5 g/s Movement on haul road (75% Control) - application of level 2 watering 0.54 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Total no. of trips of 60 ton Haul Truck to Crusher and back (5706 hours)		16651 trips	45.62 Trips per day * 365 days
Kilometers travelled from coal pit to crusher 3.2 km Kilometers travelled from coal pit to waste dump 3.6 km Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours) 6.5 g/s Movement on haul road (75% Control) - application of level 2 watering 0.54 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Total no. of trips of 60 ton Haul Truck to waste dump (6536 hours)		51246 trips	140.4 Trips per day * 365 days - by three overburden hau
Kilometers travelled from coal pit to waste dump 3.6 km Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours) 6.5 g/s Movement on haul road (75% Control) - application of level 2 watering 1.62 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 0.54 g/s (75% Dust Control - Level 2 Watering)	Kilometers travelled from coal pit to crusher		3.2 km	
Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours)2.2 g/s 2.2 g/s(Per Year)Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours)6.5 g/s"Movement on haul road (75% Control) - application of level 2 watering0.54 g/s(75% Dust Control - Level 2 Watering)Emissions from coal pit to crusher (PM10) - Haul Truck0.54 g/s(75% Dust Control - Level 2 Watering)Emissions from coal pit to waste dump (PM10) - Haul Truck0.54 g/s(75% Dust Control - Level 2 Watering)	Kilometers travelled from coal pit to waste dump		3.6 km	
Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours) 2.2 g/s Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours) 6.5 g/s Movement on haul road (75% Control) - application of level 2 watering Emissions from coal pit to crusher (PM10) - Haul Truck 0.54 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 0.54 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)				(Per Year)
Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours) 6.5 g/s Movement on haul road (75% Control) - application of level 2 watering Emissions from coal pit to crusher (PM10) - Haul Truck 0.54 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Emissions from coal pit to crusher (PM10) - Haul Truck (5706 Hours)		2.2 g/s	
Movement on haul road (75% Control) - application of level 2 watering Emissions from coal pit to crusher (PM10) - Haul Truck 0.54 g/s (75% Dust Control - Level 2 Watering) Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Emissions from coal pit to waste dump (PM10) - Haul Truck (6536 Hours)		6.5 g/s	
Emissions from coal pit to crusher (PM10) - Haul Truck0.54g/s(75% Dust Control - Level 2 Watering)Emissions from coal pit to waste dump (PM10) - Haul Truck1.62g/s(75% Dust Control - Level 2 Watering)	Movement on haul road (75% Control) - application of level 2 watering			
Emissions from coal pit to waste dump (PM10) - Haul Truck 1.62 g/s (75% Dust Control - Level 2 Watering)	Emissions from coal pit to crusher (PM10) - Haul Truck		0.54 g/s	(75% Dust Control - Level 2 Watering)
	Emissions from coal pit to waste dump (PM10) - Haul Truck		1.62 g/s	(75% Dust Control - Level 2 Watering)

DRAFT

Appendix E Concentration Isopleths for Compounds

NB: Background values represent the regional background levels

	Predicted Gr	ound Level SO ₂ Cor (µנ	ncentration – 99.9 th 1 g/m ³)	Hour Average
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)
Max 99.9 th 1hr Ave for modelled domain outside plant boundary	1.8	859	861	450
1	1.8	248	250	450
2	1.8	307	309	450
3	1.8	454	456	450
4	1.8	284	286	450
5	1.8	354	356	450
6	1.8	247	249	450
7	1.8	235	237	450
8	1.8	271	273	450
9	1.8	266	268	450
10	1.8	275	277	450
11	1.8	322	324	450
12	1.8	299	301	450
13	1.8	214	216	450
14	1.8	218	220	450

Figure E1: Predicted Ground Level Concentrations SO_2 - 99.9th 1 Hour Average (µg/m³) – Alcoa Only (2008-2012) Table E1: SO2 – 99.9th1 Hour Average Predicted Ground LevelConcentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

		(h	g/mč)	
	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted	EPAV design ground level concentration (dqlc)
Receptor			Concentrations (Alcoa Only)	
Max 99.9 th 1hr Ave for modelled domain outside plant boundary	NA	1.9	1.9	29000
1	NA	0.6	0.6	29000
2	NA	0.7	0.7	29000
3	NA	1.0	1.0	29000
4	NA	0.7	0.7	29000
5	NA	0.7	0.7	29000
6	NA	0.6	0.6	29000
7	NA	0.6	0.6	29000
8	NA	0.7	0.7	29000
9	NA	0.6	0.6	29000
10	NA	0.7	0.7	29000
11	NA	0.8	0.8	29000
12	NA	0.7	0.7	29000
13	NA	0.5	0.5	29000
14	NA	0.6	0.6	29000

Figure E2: Predicted Ground Level Concentrations CO- 99.9th 1 Hour Average (µg/m³) – Alcoa Only (2008-2012)

Table E2: CO- 99.9th 1 Hour Average Predicted Ground LevelConcentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted	Predicted Ground Level NO ₂ Concentration – 99.9 th 1Hour Avg (ug/m ³)						
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)				
Max 99.9 th 1hr Ave for modelled domain outside plant boundary	NA	71	71	190				
1	NA	21	21	190				
2	NA	25	25	190				
3	NA	37	37	190				
4	NA	24	24	190				
5	NA	24	24	190				
6	NA	22	22	190				
7	NA	24	24	190				
8	NA	26	26	190				
9	NA	23	23	190				
10	NA	25	25	190				
11	NA	29	29	190				
12	NA	27	27	190				
13	NA	18	18	190				
14	NA	22	22	190				

 Table E3: NO₂- 99.9th 1 Hour Average Predicted Ground Level

 Concentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted Ground Level Lead Concentration – 99.9 ⁴¹ 1Hour Average (ug/m ³)						
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)			
Max 99.9 th 1hr Ave for modelled domain outside plant boundary	NA	0.022	0.022	3			
1	NA	0.0004	0.0004	3			
2	NA	0.0003	0.0003	3			
3	NA	0.0003	0.0003	3			
4	NA	0.0002	0.0002	3			
5	NA	0.0003	0.0003	3			
6	NA	0.0004	0.0004	3			
7	NA	0.0004	0.0004	3			
8	NA	0.0003	0.0003	3			
9	NA	0.0004	0.0004	3			
10	NA	0.0003	0.0003	3			
11	NA	0.0003	0.0003	3			
12	NA	0.0003	0.0003	3			
13	NA	0.0007	0.0007	3			
14	NA	0.0002	0.0002	3			

Figure E4: Predicted Ground Level Concentrations Lead- 99.9th 1Hr Average (µg/m³) – Alcoa Only (2008-2012)

Table E4: Lead- 99.9th 1Hr Average Predicted Ground LevelConcentrations – Alcoa Only (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted	Ground Level Fluori	de Concentration – 2	24Hr (ug/m ³)
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)
99.5 th 24hr Ave for modelled domain outside plant boundary	NA	0.10	0.10	3
1	NA	0.02	0.02	3
2	NA	0.04	0.04	3
3	NA	0.04	0.04	3
4	NA	0.02	0.02	3
5	NA	0.05	0.05	3
6	NA	0.02	0.02	3
7	NA	0.02	0.02	3
8	NA	0.02	0.02	3
9	NA	0.02	0.02	3
10	NA	0.02	0.02	3
11	NA	0.04	0.04	3
12	NA	0.03	0.03	3
13	NA	0.02	0.02	3
14	NA	0.02	0.02	3

Figure E5: Predicted Ground Level Concentrations Fluoride – 24Hr Average (µg/m³) – Alcoa Only (2008-2012) Table E5: Fluoride – 24Hr Average Predicted Ground LevelConcentrations – Alcoa Only (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicte	d Ground Level PM ₁₀	– 99.9 th 1 Hr Averag	le (ug/m ³)
	Background	Predicted Concentrations	Background	EPAV design ground level
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	(dglc)
Max 99.9 th 1hr Ave for modelled domain outside plant boundary	16.5	475	492	80
1	16.5	79	96	80
2	16.5	22	39	80
3	16.5	16	33	80
4	16.5	18	35	80
5	16.5	23	40	80
6	16.5	87	104	80
7	16.5	71	88	80
8	16.5	45	62	80
9	16.5	84	101	80
10	16.5	33	50	80
11	16.5	38	55	80
12	16.5	40	57	80
13	16.5	175	192	80
14	16.5	26	43	80

Table E6: PM10 – 99.9th 1 Hr Average Predicted Ground LevelConcentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicte	ed Ground Level PM ₂	_{.5} – 99.9 th 1 Hr Avera	ge (ug/m³)
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)
Max 99.9 th 1hr Ave for modelled domain outside plant boundary	4.6	168	173	50
1	4.6	27	32	50
2	4.6	8.7	14	50
3	4.6	6.1	11	50
4	4.6	6.0	11	50
5	4.6	9.1	14	50
6	4.6	30	35	50
7	4.6	26	31	50
8	4.6	17	22	50
9	4.6	36	41	50
10	4.6	13	18	50
11	4.6	15	20	50
12	4.6	15	20	50
13	4.6	66	71	50
14	4.6	9.3	14	50

 Table E7: PM_{2.5} 99.9th 1 Hour Average Predicted Ground Level

 Concentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicte	d Ground Level PM ₁₀	, – 99.5 th 24 Hr Avera	ge (ug/m ³)
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	NEPC ground level concentration (glc)
Max 99.5 th 24hr Ave for modelled domain outside plant boundary	15.6	137	153	50
1	15.6	17.8	33	50
2	15.6	4.3	20	50
3	15.6	3.2	19	50
4	15.6	2.8	18	50
5	15.6	5.0	21	50
6	15.6	13.3	29	50
7	15.6	10.0	26	50
8	15.6	8.6	24	50
9	15.6	22.6	38	50
10	15.6	6.4	22	50
11	15.6	7.4	23	50
12	15.6	7.1	23	50
13	15.6	36.1	52	50
14	15.6	5.0	21	50

Table E8: PM10- 99.5th 24 Hour Average Predicted Ground LevelConcentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted	d Ground Level PM _{2.5}	₅ – 99.5 th 24 Hr Avera	ige (ug/m³)
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)
99.5 th 24 Hr Ave outside plant boundary	4.6	46	50.6	25
1	4.6	5.8	10.4	25
2	4.6	1.7	6.3	25
3	4.6	1.2	5.8	25
4	4.6	1.0	5.6	25
5	4.6	1.9	6.5	25
6	4.6	5.7	10.3	25
7	4.6	4.6	9.2	25
8	4.6	3.4	8.0	25
9	4.6	9.5	14.1	25
10	4.6	2.5	7.1	25
11	4.6	2.8	7.4	25
12	4.6	3.0	7.6	25
13	4.6	12.6	17.2	25
14	4.6	2.2	6.8	25

 Table E9: PM_{2.5} –99.5th 24 Hour Average Predicted Ground Level

 Concentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted 0	Fround Level Antimo	ny– 99.9 th 3min Ave	rage (ug/m ³)
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.003	0.003	17
1	NA	0.0001	0.0001	17
2	NA	0.0001	0.0001	17
3	NA	0.0001	0.0001	17
4	NA	0.0001	0.0001	17
5	NA	0.0001	0.0001	17
6	NA	0.0001	0.0001	17
7	NA	0.0001	0.0001	17
8	NA	0.0001	0.0001	17
9	NA	0.0001	0.0001	17
10	NA	0.0001	0.0001	17
11	NA	0.0001	0.0001	17
12	NA	0.0001	0.0001	17
13	NA	0.0001	0.0001	17
14	NA	0.0001	0.0001	17

Figure E10: Predicted Ground Level Concentrations Antimony– 99.9th 3-Min Average (µg/m³) – Alcoa Only (2008-2012)

Table E10: Antimony– 99.9th3-Min Average Predicted GroundLevel Concentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicte	d Ground Level HCI	– 99.9 [™] 3 Min Averag	e (ug/m³)
	Background	Predicted Concentrations	Background	EPAV design ground level
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	concentration (dglc)
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	5.2	5.2	250
1	NA	1.6	1.6	250
2	NA	1.8	1.8	250
3	NA	2.7	2.7	250
4	NA	1.7	1.7	250
5	NA	1.7	1.7	250
6	NA	1.6	1.6	250
7	NA	1.7	1.7	250
8	NA	1.9	1.9	250
9	NA	1.7	1.7	250
10	NA	1.8	1.8	250
11	NA	2.2	2.2	250
12	NA	2.0	2.0	250
13	NA	1.3	1.3	250
14	NA	1.6	1.6	250

Figure E11: Predicted Ground Level Concentrations HCl– 99.9th 3 Min Average (µg/m³) – Alcoa Only (2008-2012)

 Table E11: HCl– 99.9th 3 Min Average Predicted Ground Level

 Concentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted Ground Level Arsenic – 99.9 th 3min Average (ug/m ³)					
	Background	Predicted Concentrations	Background	EPAV design ground level		
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	(dglc)		
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.0025	0.0025	0.17		
1	NA	0.0007	0.0007	0.17		
2	NA	0.0009	0.0009	0.17		
3	NA	0.0013	0.0013	0.17		
4	NA	0.0008	0.0008	0.17		
5	NA	0.0008	0.0008	0.17		
6	NA	0.0008	0.0008	0.17		
7	NA	0.0008	0.0008	0.17		
8	NA	0.0009	0.0009	0.17		
9	NA	0.0008	0.0008	0.17		
10	NA	0.0009	0.0009	0.17		
11	NA	0.0010	0.0010	0.17		
12	NA	0.0009	0.0009	0.17		
13	NA	0.0006	0.0006	0.17		
14	NA	0.0008	0.0008	0.17		

Figure E12: Predicted Ground Level Concentrations Arsenic– 99.9th 3 Min Average (µg/m³) – Alcoa Only (2008-2012)

Table E12: Arsenic- 99.9th 3 Min Average Predicted Ground LevelConcentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted Ground Level Cadmium– 99.9 th 3Min Average (ug/m ³)					
	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted	EPAV design ground level concentration (date)		
Receptor		(Concentrations (Alcoa Only)	(ugic)		
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.00017	0.00017	0.03		
1	NA	0.00005	0.00005	0.03		
2	NA	0.00006	0.00006	0.03		
3	NA	0.00009	0.00009	0.03		
4	NA	0.00006	0.00006	0.03		
5	NA	0.00006	0.00006	0.03		
6	NA	0.00005	0.00005	0.03		
7	NA	0.00006	0.00006	0.03		
8	NA	0.00006	0.00006	0.03		
9	NA	0.00005	0.00005	0.03		
10	NA	0.00006	0.00006	0.03		
11	NA	0.00007	0.00007	0.03		
12	NA	0.00006	0.00006	0.03		
13	NA	0.00004	0.00004	0.03		
14	NA	0.00005	0.00005	0.03		

Table E13: Cadmium- 99.9th 3 Min Average Predicted GroundLevel Concentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Background	Predicted Concentrations	Background	EPAV design ground level concentration (dalc)	
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	(agio)	
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.0171	0.0171	17	
1	NA	0.0051	0.0051	17	
2	NA	0.0060	0.0060	17	
3	NA	0.0090	0.0090	17	
4	NA	0.0057	0.0057	17	
5	NA	0.0057	0.0057	17	
6	NA	0.0053	0.0053	17	
7	NA	0.0057	0.0057	17	
8	NA	0.0061	0.0061	17	
9	NA	0.0055	0.0055	17	
10	NA	0.0060	0.0060	17	
11	NA	0.0071	0.0071	17	
12	NA	0.0064	0.0064	17	
13	NA	0.0044	0.0044	17	
14	NA	0.0052	0.0052	17	

Figure E14: Predicted Ground Level Concentrations Chromium (III) – 99.9th 3 Min Average (µg/m³) – Alcoa Only (2008-2012)

Table E14: Chromium (III) – 99.9th 3 Min Average Predicted Ground Level Concentrations (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted Ground Level Chromium (VI)– 99.9 th 3Min Average (ug/m ³)					
Receptor	Background	Predicted Concentrations (Alcoa Only)	Background + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)		
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.0187	0.0187	0.17		
1	NA	0.0056	0.0056	0.17		
2	NA	0.0066	0.0066	0.17		
3	NA	0.0099	0.0099	0.17		
4	NA	0.0063	0.0063	0.17		
5	NA	0.0063	0.0063	0.17		
6	NA	0.0059	0.0059	0.17		
7	NA	0.0062	0.0062	0.17		
8	NA	0.0067	0.0067	0.17		
9	NA	0.0061	0.0061	0.17		
10	NA	0.0066	0.0066	0.17		
11	NA	0.0078	0.0078	0.17		
12	NA	0.0071	0.0071	0.17		
13	NA	0.0048	0.0048	0.17		
14	NA	0.0057	0.0057	0.17		

Figure E15: Predicted Ground Level Concentrations Chromium (VI) – 99.9th 3 Min Average (µg/m³) – Alcoa Only (2008-2012)

Table E15: Chromium (VI) – 99.9th 3 Min Average PredictedGround Level Concentration (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted Background	d Ground Level Cop Predicted Concentrations	per– 99.9 [™] 3Min Ave Background	rage (ug/m [°]) EPAV design ground level concentration
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	(dglc)
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.07	0.07	6.7
1	NA	0.0008	0.0008	6.7
2	NA	0.0010	0.0010	6.7
3	NA	0.0014	0.0014	6.7
4	NA	0.0009	0.0009	6.7
5	NA	0.0009	0.0009	6.7
6	NA	0.0008	0.0008	6.7
7	NA	0.0009	0.0009	6.7
8	NA	0.0010	0.0010	6.7
9	NA	0.0009	0.0009	6.7
10	NA	0.0010	0.0010	6.7
11	NA	0.0011	0.0011	6.7
12	NA	0.0010	0.0010	6.7
13	NA	0.0007	0.0007	6.7
14	NA	0.0008	0.0008	6.7
Table E16: Concentrat	Copper – 99.9 ion (2008-201	9 th 3 Min Avera 2)	age Predicted G	Fround Level

Figure E16: Predicted Ground Level Concentrations Copper – 99.9th 3 Min Average (µg/m³) – Alcoa Only (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea			
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	

	Predicted Ground Level Benzene– 99.9 th 3Min Average (ug/m ³)					
	Background	Predicte Concentrat	d ions	Background	EPAV design ground level concentration	
		(Alcoa On	ily)	+ Predicted Concentrations (Alcoa Only)	(dglc) S	
Receptor						
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.0042		0.0042	53	
1	NA	0.0012		0.0012	53	
2	NA	0.0015		0.0015	53	
3	NA	0.0022		0.0022	53	
4	NA	0.0014		0.0014	53	
5	NA	0.0014		0.0014	53	
6	NA	0.0013		0.0013	53	
7	NA	0.0014		0.0014	53	
8	NA	0.0015		0.0015	53	
9	NA	0.0014		0.0014	53	
10	NA	0.0015		0.0015	53	
11	NA	0.0017		0.0017	53	
12	NA	0.0016		0.0016	53	
13	NA	0.0011		0.0011	53	
14	NA	0.0013		0.0013	53	
Table E17: Benzene – 99.9th 3 Min Average Predicted Ground LevelConcentration (2008-2012)						
Client: Alcoa Angl	esea					
Project: Anglesea H	HRA		Draw	ving Ref: AL	Date: 11/7/13	

	Predicted	Ground Level Berylli	um– 99.9 th 3Min Ave	rage (ug/m ³)
	Background	Predicted Concentrations	Background	EPAV design ground level concentration (dglc)
Pagantar		(Aicoa Oniy)	Concentrations (Alcoa Only)	
Max 00 0 th				
3min Ave for modelled domain outside plant boundary	NA	0.002	0.002	0.007
1	NA	0.0002	0.0002	0.007
2	NA	0.0001	0.0001	0.007
3	NA	0.0001	0.0001	0.007
4	NA	0.0001	0.0001	0.007
5	NA	0.0001	0.0001	0.007
6	NA	0.0002	0.0002	0.007
7	NA	0.0002	0.0002	0.007
8	NA	0.0001	0.0001	0.007
9	NA	0.0002	0.0002	0.007
10	NA	0.0001	0.0001	0.007
11	NA	0.0001	0.0001	0.007
12	NA	0.0001	0.0001	0.007
13	NA	0.0003	0.0003	0.007
14	NA	0.0001	0.0001	0.007
Table E18: Level Conc	Beryllium – 9 centration (20	99.9 th 3 Min Av 08-2012)	erage Predicted	Ground
Client: Alcoa Ar	Iglesea			

Drawing Ref: AL

Date: 11/7/13

Project: Anglesea HHRA

	Background	Predicted Concentrations	Background	EPAV design ground level concentration
Pasantar		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	(ugic)
		<u> </u>	+	+
Max 99.9 3min Ave for modelled domain outside plant boundary	NA	0.0052	0.0052	33
1	NA	0.0016	0.0016	33
2	NA	0.0018	0.0018	33
3	NA	0.0027	0.0027	33
4	NA	0.0017	0.0017	33
5	NA	0.0017	0.0017	33
6	NA	0.0016	0.0016	33
7	NA	0.0017	0.0017	33
8	NA	0.0019	0.0019	33
9	NA	0.0017	0.0017	33
10	NA	0.0018	0.0018	33
11	NA	0.0022	0.0022	33
12	NA	0.0020	0.0020	33
13	NA	0.0013	0.0013	33
14	NA	0.0016	0.0016	33
Table E19: Level Conc	Manganese - centration (20	- 99.9 th 3 Min .)08-2012)	Average Predic	ted Ground

	Predicted Ground Level Mercury– 99.9 th 3Min Average (ug/m ³)							
Receptor	Background	Predicted Concentratio (Alcoa Onl	i Background ons + Predicted Concentrations (Alcoa Only)	EPAV design ground level concentration (dglc)				
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.0011	0.0011	0.33				
1	NA	0.0003	0.0003	0.33				
2	NA	0.0004	0.0004	0.33				
3	NA	0.0006	0.0006	0.33				
4	NA	0.0004	0.0004	0.33				
5	NA	0.0004	0.0004	0.33				
6	NA	0.0003	0.0003	0.33				
7	NA	0.0004	0.0004	0.33				
8	NA	0.0004	0.0004	0.33				
9	NA	0.0003	0.0003	0.33				
10	NA	0.0004	0.0004	0.33				
11	NA	0.0004	0.0004	0.33				
12	NA	0.0004	0.0004	0.33				
13	NA	0.0003	0.0003	0.33				
14	NA	0.0003	0.0003	0.33				
Table E20: Mercury– 99.9 th 3 Min Average Predicted Ground Level Concentration (2008-2012)								
Client: Alcoa Ang	glesea							
Project: Anglesea	Project: Anglesea HHRA Drawing Ref: AL Date: 11/7/13							

Drawing Ref: AL

Date: 11/7/13

Client: Alcoa Anglesea Project: Anglesea HHRA

	Background	Predicted Concentrations	Background	EPAV design ground leve concentratio
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	(dglc)
Max 99.9 th 3min Ave for modelled domain outside plant boundary		0.02	0.02	0.33
1	NA	0.01	0.01	0.33
2	NA	0.01	0.01	0.33
3	NA	0.01	0.01	0.33
4	NA	0.01	0.01	0.33
5	NA	0.01	0.01	0.33
6	NA	0.01	0.01	0.33
7	NA	0.01	0.01	0.33
8	NA	0.01	0.01	0.33
9	NA	0.01	0.01	0.33
10	NA	0.01	0.01	0.33
11	NA	0.01	0.01	0.33
12	NA	0.01	0.01	0.33
13	NA	0.01	0.01	0.33
14	NA	0.01	0.01	0.33
Table E21: Concentrat	Nickel – 99.9 ion (2008-201	th 3 Min Avera 12)	age Predicted (Ground Level
Client: Alcoa An	glesea			

	Predicted Gro	ound Level Ben	zo[a]pyrene – 99.9 th 3N	lin Average (ug/m ³)		
	Background	Predicted Concentratic	Background	EPAV design ground level concentration		
		(Alcoa Onl <u>y</u>	y) + Predicted Concentrations (Alcoa Only)	(dglc)		
Receptor						
Max 99.9" 3min Ave for modelled domain outside plant boundary	NA	0.0250	0.0250	0.73		
1	NA	0.0075	0.0075	0.73		
2	NA	0.0088	0.0088	0.73		
3	NA	0.0131	0.0131	0.73		
4	NA	0.0084	0.0084	0.73		
5	NA	0.0084	0.0084	0.73		
6	NA	0.0078	0.0078	0.73		
7	NA	0.0083	0.0083	0.73		
8	NA	0.0090	0.0090	0.73		
9	NA	0.0081	0.0081	0.73		
10	NA	0.0088	0.0088	0.73		
11	NA	0.0103	0.0103	0.73		
12	NA	0.0094	0.0094	0.73		
13	NA	0.0064	0.0064	0.73		
14	NA	0.0076	0.0076	0.73		
Table E22: Benzo[a]pyrene – 99.9th 3 Min Average PredictedGround Level Concentration (2008-2012)						
Client: Alcoa Ang	glesea					
Project: Anglesea HHRA			Drawing Ref: AL Date: 11/7/13			

	Predicted Ground Level Dioxins & Furans– 99.9 th 3Min Average (ug/m ³)							
	Background	Predicted Concentrations	Background	EPAV design ground level concentration (dglc)				
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)					
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	3.8E-09	3.8E-09	3.7E-06				
1	NA	1.1E-09	1.1E-09	3.7E-06				
2	NA	1.3E-09	1.3E-09	3.7E-06				
3	NA	2.0E-09	2.0E-09	3.7E-06				
4	NA	1.3E-09	1.3E-09	3.7E-06				
5	NA	1.3E-09	1.3E-09	3.7E-06				
6	NA	1.2E-09	1.2E-09	3.7E-06				
7	NA	1.3E-09	1.3E-09	3.7E-06				
8	NA	1.4E-09	1.4E-09	3.7E-06				
9	NA	1.2E-09	1.2E-09	3.7E-06				
10	NA	1.3E-09	1.3E-09	3.7E-06				
11	NA	1.6E-09	1.6E-09	3.7E-06				
12	NA	1.4E-09	1.4E-09	3.7E-06				
13	NA	9.8E-10	9.8E-10	3.7E-06				
14	NA	1.2E-09	1.2E-09	3.7E-06				

Table E23: Dioxins & Furans – 99.9th 3 Min Average Predicted Ground Level Concentration (2008-2012)

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

Figure E24: Predicted Ground Level Concentrations Chlorine-
99.9 th 3 Min Average (µg/m ³) – Alcoa Only (2008-2012)

	Predicted Ground Level Chlorine– 99.9 th 3Min Average (ug/m ³)						
	Background	Predicted Concentrations	Background	EPAV design ground level concentration			
Receptor		(Alcoa Only)	+ Predicted Concentrations (Alcoa Only)	(dglc)			
Max 99.9 th 3min Ave for modelled domain outside plant boundary	NA	0.008	0.008	100			
1	NA	0.002	0.002	100			
2	NA	0.003	0.003	100			
3	NA	0.004	0.004	100			
4	NA	0.003	0.003	100			
5	NA	0.003	0.003	100			
6	NA	0.003	0.003	100			
7	NA	0.003	0.003	100			
8	NA	0.003	0.003	100			
9	NA	0.003	0.003	100			
10	NA	0.003	0.003	100			
11	NA	0.003	0.003	100			
12	NA	0.003	0.003	100			
13	NA	0.002	0.002	100			
14	NA	0.003	0.003	100			
Table E24: (Concentration	Chlorine– 99. on (2008-201	.9 th 3 Min Aver 2)	age Predicted (Ground Level			

Client: Alcoa Anglesea			Client: Alcoa Anglesea		
Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13	Project: Anglesea HHRA	Drawing Ref: AL	Date: 11/7/13

	Predicted	Predicted Ground Level Boron– 99.9 th 1 Hour Average (ug/m ³)							
Receptor	Background	Predicted Concentration (Alcoa Onl	y) + Predicted Concentration: (Alcoa Only)	Texas Commission on Environmental Quality (TCEQ) (µg/m3) s					
Max 99.9 th 1 hr Ave for modelled domain outside plant boundary	NA	0.8	0.8	50					
1	NA	0.2	0.2	50					
2	NA	0.4	0.4	50					
3	NA	0.4	0.4	50					
4	NA	0.3	0.3	50					
5	NA	0.3	0.3	50					
6	NA	0.2	0.2	50					
7	NA	0.3	0.3	50					
8	NA	0.3	0.3	50					
9	NA	0.2	0.2	50					
10	NA	0.3	0.3	50					
11	NA	0.3	0.3	50					
12	NA	0.3	0.3	50					
13	NA	0.2	0.2	50					
14	NA	0.2	0.2	50					
Table E25: Boron – 99.9 th 1 Hour Average Predicted Ground Level Concentration (2008-2012)									
Client: Alcoa An	glesea								
Project: Anglesea	Project: Anglesea HHRA			Date: 11/7/13					

Appendix F Analysis of Concentrations Associated with the Peak HQs

Table F1 Predicted Concentrations when 99.9 th Percentile 1-Hour Average Ground Level Concentrations of Sulphur Dioxide is Predicted to Occur									
Without Background									
		Predicted	d Concentration	ns (µg/m³)		Hazard Quotient	-		
		SO ₂	PM ₁₀	PM _{2.5}	SO ₂	PM ₁₀	PM _{2.5}		
Receptor	Date	1-hour	24-hour	24-hour	1-hour	24-hour	24-hour		
CFA Hut	23/01/2012	248	0.3	0.1	0.47	0.01	0.00		
Bald Hills	11/08/2009	307	1.0	0.4	0.58	0.02	0.02		
Water Basin	27/01/2011	454	0.5	0.2	0.87	0.01	0.01		
Forest Road	8/10/2012	284	0.7	0.2	0.54	0.01	0.01		
Scout Camp	23/04/2011	354	0.9	0.3	0.68	0.02	0.01		
Primary School	5/01/2008	247	0.1	0.0	0.47	0.00	0.00		
Camp Road	13/04/2012	235	0.4	0.1	0.45	0.01	0.01		
Community Centre	7/11/2012	271	0.0	0.0	0.52	0.00	0.00		
Camp Wilkin	23/03/2008	266	0.0	0.0	0.51	0.00	0.00		
Anglesea Surf	7/01/2011	275	0.2	0.1	0.53	0.00	0.00		
Waste Treatment	25/09/2012	322	0.7	0.3	0.61	0.02	0.01		
Anglesea Caravan	17/05/2011	299	0.7	0.2	0.57	0.02	0.01		
Fraser Avenue	5/07/2010	214	12.5	3.9	0.41	0.27	0.17		
Pt Road	7/04/2011	218	0.2	0.1	0.42	0.00	0.00		

Table F2 Predicted Concentrations when 99.9 th Percentile 1-Hour Average Ground Level Concentrations of Sulphur Dioxide is Predicted to Occur									
With Background		·							
		Predicte	d Concentratio	ns (µg/m³)		Hazard Quotient			
		SO ₂	PM ₁₀	PM _{2.5}	SO ₂	PM ₁₀	PM _{2.5}		
Receptor	Date	1-hour	24-hour	24-hour	1-hour	24-hour	24-hour		
CFA Hut	23/01/2012	248	15.9	4.7	0.47	0.35	0.20		
Bald Hills	11/08/2009	307	16.6	5.0	0.58	0.36	0.22		
Water Basin	27/01/2011	454	16.1	4.8	0.87	0.35	0.21		
Forest Road	8/10/2012	284	16.3	4.8	0.54	0.35	0.21		
Scout Camp	23/04/2011	354	16.5	4.9	0.68	0.36	0.21		
Primary School	5/01/2008	247	15.7	4.6	0.47	0.34	0.20		
Camp Road	13/04/2012	235	16.0	4.7	0.45	0.35	0.21		
Community Centre	7/11/2012	271	15.6	4.6	0.52	0.34	0.20		
Camp Wilkin	23/03/2008	266	15.6	4.6	0.51	0.34	0.20		
Anglesea Surf	7/01/2011	275	15.8	4.7	0.53	0.34	0.20		
Waste Treatment	25/09/2012	322	16.3	4.9	0.61	0.35	0.21		
Anglesea Caravan	17/05/2011	299	16.3	4.8	0.57	0.35	0.21		
Fraser Avenue	5/07/2010	214	28.1	8.5	0.41	0.61	0.37		
Pt Road	7/04/2011	218	15.8	4.7	0.42	0.34	0.20		
Without Background									
--------------------	------------	---	-------------------------	-------------------	-----------------	-------------------------	-------------------		
		Predicted Concentrations (μg/m ³)			Hazard Quotient				
		SO ₂	PM ₁₀	PM _{2.5}	SO ₂	PM ₁₀	PM _{2.5}		
Receptor	Date	1-hour	24-hour	24-hour	1-hour	24-hour	24-hour		
CFA Hut	26/10/2008	0	17.8	5.8	0.00	0.39	0.25		
Bald Hills	3/03/2010	145	4.3	1.6	0.28	0.09	0.07		
Water Basin	10/02/2011	30	3.2	1.2	0.06	0.07	0.05		
Forest Road	1/11/2010	183	2.8	1.0	0.35	0.06	0.04		
Scout Camp	24/03/2012	0	5.0	1.9	0.00	0.11	0.08		
Primary School	5/02/2011	4	13.3	5.7	0.01	0.29	0.25		
Camp Road	29/04/2010	0	10.0	4.6	0.00	0.22	0.20		
Community Centre	3/03/2009	2	8.6	3.4	0.00	0.19	0.15		
Camp Wilkin	30/01/2010	2	22.6	9.5	0.00	0.49	0.41		
Anglesea Surf	26/04/2008	0	6.4	2.5	0.00	0.14	0.11		
Waste Treatment	1/07/2010	0	7.4	2.8	0.00	0.16	0.12		
Anglesea Caravan	9/01/2012	0	7.1	3.0	0.00	0.15	0.13		
Fraser Avenue	10/04/2011	0	36.1	12.6	0.00	0.78	0.55		
Pt Road	18/06/2009	0	5.0	2.2	0.00	0.11	0.10		

Table F4 Predicted Concentrations when 99.5 th Percentile 24-Hour Average Ground Level Concentrations of PM ₁₀ is Predicted to Occur									
With Background									
		Predicted Concentrations (µg/m ³)			Hazard Quotient				
		SO ₂	PM ₁₀	PM _{2.5}	SO ₂	PM ₁₀	PM _{2.5}		
Receptor	Date	1-hour	24-hour	24-hour	1-hour	24-hour	24-hour		
CFA Hut	26/10/2008	0	33.4	10.4	0.00	0.73	0.45		
Bald Hills	3/03/2010	145	19.9	6.2	0.28	0.43	0.27		
Water Basin	10/02/2011	30	18.8	5.8	0.06	0.41	0.25		
Forest Road	1/11/2010	183	18.4	5.6	0.35	0.40	0.24		
Scout Camp	24/03/2012	0	20.6	6.5	0.00	0.45	0.28		
Primary School	5/02/2011	4	28.9	10.3	0.01	0.63	0.45		
Camp Road	29/04/2010	0	25.6	9.2	0.00	0.56	0.40		
Community Centre	3/03/2009	2	24.2	8.0	0.00	0.53	0.35		
Camp Wilkin	30/01/2010	2	38.2	14.1	0.00	0.83	0.61		
Anglesea Surf	26/04/2008	0	22.0	7.1	0.00	0.48	0.31		
Waste Treatment	1/07/2010	0	23.0	7.4	0.00	0.50	0.32		
Anglesea Caravan	9/01/2012	0	22.7	7.6	0.00	0.49	0.33		
Fraser Avenue	10/04/2011	0	51.7	17.2	0.00	1.12	0.75		
Pt Road	18/06/2009	0	20.6	6.8	0.00	0.45	0.30		
Note: Sulphur dioxide is the m	aximum 1-hour concentra	tion predicted on	the specific date.						